详情点击公众号链接:“Python+”集成技术高光谱遥感数据处理与机器学习教程
第一:高光谱基础
一:高光谱遥感基本概念
01)高光谱遥感
02)光的波长
03)光谱分辨率
04)高光谱遥感的历史和发展
二:高光谱传感器与数据获取
01)高光谱遥感成像原理与传感器
02)卫星高光谱数据获取
03)机载(无人机)高光谱数据获取
04)地面光谱数据获取
05)构建光谱库
三:高光谱数据预处理
01)图像的物理意义
02)数字量化图像(DN值)
03)辐射亮度数据
04)反射率
05)辐射定标
06)大气校正
资源02D高光谱卫星数据辐射定标与大气校正
四:高光谱分析
01)光谱特征分析
02)高光谱图像分类
03)高光谱地物识别
04)高光谱混合像元分解
(1)使用DISPEC 对光谱库数据进行光谱吸收特征分析
(2)使用ENVI的沙漏程序对资源02D高光谱卫星数据进行混合像元分解
第二:高光谱开发基础(Python)
一:Python编程
01)Python简介
02)变量和数据类型
03)控制结构
04)功能和模块
05)文件、包、环境
(1)python基础语法练习
(2)文件读写练习
(3)包的创建导入练习
(4)numpy\pandas 练习
二:Python空间数据处理
01)空间数据Python处理介绍
02)矢量数据处理
03)栅格数据处理
(1)python矢量数据处理练习
(2)python栅格处理练习
三:python 高光谱数据处理
01)数据读取
02)数据预处理
辐射定标、6S大气校正
03)光谱特征提取
吸收特征提取
04)混合像元分解
PPI、NFINDER端元光谱提取
UCLS、NNLS、FCLS最小二乘端元丰度计算
(1)高光谱数据读取
(2)高光谱数据预处理
(3)光谱特征提取
(4)混合像元分解
第三:高光谱机器学习技术(python)
一:机器学习与python实践
01)机器学习与sciki learn
02)数据和算法选择
03)通用学习流程
04)数据准备
05)模型性能评估
06)机器学习模型
机器学习sciki learn练习
二:深度学习与python实践
01)深度学习概述
02)深度学习框架
03)pytorch开发基础-张量
04)pytorch开发基础-神经网络
05)卷积神经网络
06)手写数据识别
07)图像识别
(1)深度学习pytorch基础练习
(2)手写数字识别与图像分类练习
三:高光谱深度学习机器学习实践
01)基于scklearn高光谱机器学习
02)使用自己的数据进行机器学习(envi标注数据)
03) 高光谱深度学习框架
04) 高光谱卷积网络构建
05)使用自己的数据进行深度学习
(1)高光谱数据分类练习
(2)高光谱深度学习练习
(3)使用自己数据测试
第四:典型案例
一:矿物填图案例
01)岩矿光谱机理
02)基于光谱特征的分析方法
03)混合像元分解的分析方法
(1)矿物高光谱特征分析习
(2)基于混合像元分解矿物填图
二:农业应用案例
01)植被光谱机理
02)农作物病虫害分类
03)农作物分类深度学习实践
(1)农作物病虫害数据分类
(2)农作物分类深度学习练习
三:土壤质量评估案例
01)土壤光谱机理
02)土壤质量调查
03)土壤含水量光谱评估方法
04)土壤有机质含量评估与制图
(1)基于9种机器学习模型的土壤水分含量回归
(2)土壤有机质含量回归与制图
四:木材含水率评估案例
01)高光谱无损检测
02)木材无损检测
03)高光谱木材含水量评估
木材含水量评估和制图