• NoSQL数据库(林子雨慕课课程)


    5.1 NoSQL数据库

    NoSQL兴起原因1:关系型数据库无法满足Web2.0的需求

    • 很多非关系型数据可以作为关系型数据的补充,很多业务场景下需要用到非关系型数据库

      image-20231008215309852

    • NOSQL数据库特点

      • 灵活的可扩展性:有非常强大的水平可扩展性,可以支持在多个机器上水平扩展

      • 灵活的数据模型

      • 和云计算的紧密结合:

        • 云计算基础设施可以根据负载实时变化,来对底层的IT设施进行动态伸缩,负载增加可以将更多机器加入集群,如果负载减少,可以将相关的机器退出;

        • 传统关系型数据库的纵向可扩展性受到一定的限制,在水平可扩展性更是不具备这个特性,不能和云计算紧密结合

        • NoSQL在设计之初就考虑到了它的水平可扩展性,和云计算是紧密结合的

    • 传统关系型数据库在性能上的缺陷

      • 无法满足海量数据的管理需求
      • 无法满足高并发的需求
        • 因为动态数据无法提前生成,不能提前生成一个静态网页让用户来访问,只能实时地根据用户的请求来实时的生成数据
        • 这种实时生成的数据,对数据库的负载非常高
        • 基本上用关系型数据库是无法满足高并发的需求
      • 无法满足高扩展性和高可用性的需求
        • 中小型企业通过mysql集群方式的缺陷
          • 复杂性:整个集群部署非常负载
          • 延迟性:当主库的压力较大时,就会带来较大的延迟
          • 扩容问题:当集群压力过大时,需要增加新机器对整个数据集进行重新分区,非常复杂
          • 动态迁移:在集群使用过程中出现有些分库的负载重,有些分库的负载轻,这时候需要负载均衡,实现数据迁移,需要集群的总控节点来协调数据迁移过程,整个过程需要人工实现,很难实现其自动化

    NoSQL兴起的原因2:数据模型的局限性

    • 有些在线业务强调低延时,有些数据分析业务强调高吞吐率,场景不同对于数据架构提出的要求不同,用同一个数据模型适应不同业务场景是不切实际的

    • 因此根据不同的业务需求研究出了不同的产品:例如Hadoop 用于数据分析、批处理;MongDB,Redis用于在线业务
      image-20231008222007592

    NoSQL兴起的原因3:Web2.0关系型数据库的许多特性没有发挥

    • 关系型数据库有着完善的事务机制,以及高效的查询机制,但这两个优势在Web2.0无法发挥

      image-20231008222228282

    • Web2.0用更多的存储空间换取更好的性能

      image-20231008222421252

    5.2 NoSQL和关系数据库的比较

    • 关系数据库和NoSQL比较

      • 在数据库原理方面

        • 关系型数据库:具有完备的关系代数理论作为基础
        • NoSQL数据库:缺乏理论基础
      • 数据规模

        • 关系型数据库:很难实现横向扩展,纵向扩展非常有限
        • NoSQL数据库:具有非常好的水平可扩展性
      • 在数据库模式方面:

        • 关系型数据库:要定义严格的数据库模式,而且要严格遵守事先定义的数据库模式
        • NoSQL数据库:数据模型非常灵活
      • 在查询效率方面:

        • 关系型数据库:适当数量级查询效率高,当数量级增大时,查询效率下降
        • NoSQL数据库:未构建面向复杂查询的索引,因此查询性能较差
      • 在事务一致性方面:

        • 关系型数据库:遵循ACID实物模型可以保证事务的强一致性
        • NoSQL数据库:未构建面向复杂查询的索引,因此查询性能较差;NoSQL采用Base模型,很多NoSQL数据库只能保证最终一致性,不能保证强一致性
      • 在数据库完整性方面:

        • 关系型数据库:具有保证完整性的完备机制
        • NoSQL数据库:不能实现完整性约束
      • 在可扩展性方面:

        • 关系型数据库:扩展性一般是比较差的
        • NoSQL数据库:水平扩展性非常好
      • 在可用性方面:

        • 关系型数据库:随着规模增大,为了保证严格的一致性,可用性方面就削弱
        • NoSQL数据库:具有非常好的可用性,能够在短时间内迅速返回所需要的结果
      • 在标准化方面:

        • 关系型数据库:关系型数据库遵循SQL标准,标准化比较完善,不同厂家数据库可以相互访问,导入导出
        • NoSQL数据库:未形成通用的行业标准
      • 在技术支持方面:

        • 关系型数据库:关系型数据库很多都是商业数据库,可获得非常强大的技术和后续服务支持
        • NoSQL数据库:NoSQL数据库很多都属于开源产品,处于整个发展的初期阶段
      • 在可维护方面:

        • 关系型数据库:关系型数据库需要管理员维护
        • NoSQL数据库:没有成熟的基础和实践操作,维护较为复杂
    • 关系数据库的优势与劣势

      • 优势

        image-20231009124857519

      • 劣势

        image-20231009124935133

    • NoSQL数据库的优劣势

      image-20231009125043256

    • 两种数据库的应用场景

      image-20231009125130142

    5.3 四大类型NoSQL数据库

    • 四大类型NoSQL数据库

    image-20231009142847996

    • 举例

    image-20231009142923963

    5.3.1 键值数据库和列族数据库
    • 键值数据库

      • 相关产品:Redis、Memcached、SimpleDB(云端产品)

      • 数据模型:键是一个字符串对象,值可以是任意类型的数据、比如整型字符型、数组、列表、集合等

      • 典型应用:涉及频繁读写、拥有简单数据模型的应用、内容缓存、如会话、配置文件、参数、购物车等,存储配置和用户信息等移动应用

      • 优点:扩展性好、灵活性号、大量写操作性能高

      • 缺点:无法存储结构化信息,条件查询效率较低

      • 不适用的场景:

        • 键值数据库根本没有通过值查询的途径;
        • 在键值数据库中,不能通过两个或者两个以上的键来关联数据;
        • 在一些键值数据库中中产生故障时,不可以回滚
      • 使用者:百度云数据库(Redis)

      • 键值数据库的应用

        • 键值数据库成为缓冲区,将经常访问的数据放入缓冲层

        image-20231009144015726

    • 列族数据库

      • 相关产品:BigTable、HBase(master-slave架构)、Cassandra(p2p架构)
      • 数据模型:列族
      • 典型应用:
        • 适用于分布式数据存储与管理(尤其适用于海量数据存储管理,水平扩展性质好)
        • 数据在地理上分布于多个数据中心的应用程序
        • 可以容纳副本存在短期不一致情况的应用程序
        • 拥有动态字段的应用程序
      • 优点:查找速度快、可扩展性强、容易进行分布式扩展、复杂性低
      • 缺点:功能较少,大多不支持强事务一致性
      • 不适用场景:需要ACID事务支持的情形,Cassandra等产品就不适用
      • 使用者:Facebook(HBase)、Yahoo(HBase)
    5.3.2 文档数据库、图数据库、以及不同数据库比较分析
    • 文档数据库

      • 也是一种键值数据库,值为文档,关系数据库中的每一行记录,其实就是一个文档

      • 特性:可以对自己的数据的内容和类型进行自我描述

        image-20231009144918247

      • 文档数据库的数据格式:JSON格式

      • 其拥有更好的并发性:

        image-20231009145054712

      • 相关产品:MongDB、CouchDB

      • 数据模型:就是一个键值、本质是以键值数据库、只不过值时版本化文档

      • 典型应用:存储、索引并管理面向文档的是数据、或者类似的半结构化数据

      • 优点:性能好(高并发),灵活性高,提供嵌入式文档功能,将经常查询到的数据存储在同一个文档中

      • 缺点:缺乏统一的查询语法

      • 不适用情形:文档是巨苦不支持文档间的事务,如果对这方面有需求则不应该选择这个解决方案

      • 使用者:百度云数据库(MongDB)

    • 图数据库

      • 相关产品:Neo4j

      • 数据模型:图结构

      • 典型应用:专门用于处理具有高度相互关联关系的数据,比较适合于社交网络、模式识别、依赖分析、推荐系统以及路径寻找等问题

      • 优点:灵活性高、支持复杂的图形算法,可用于构建复杂的关系图谱

      • 缺点:数据模型应用范围非常有限

    • 四大类型数据库的比较

      image-20231009145959424

    5.4 NoSQL数据库的理论基石

    • NoSQL数据库的三个理论基石:CAP、BASE、最终一致性
    CAP理论:
    • Consistency 一致性:指任何一个读操作总能读到之前完成的写操作的结果

    • Availability 可用性:指快速获取数据、可以在确定的时间内返回操作结果,保证每个请求不管成功失败都有响应

    • Partition tolerance 分区容忍性:指当出现网络分区的情况时(即系统中的一部分节点无法和其他节点进行通信)分离的系统也能正常运行

      image-20231009150453082

    • 一个分布式系统最多满足这三个需求中的两个:

      image-20231009150617173

    • 牺牲一致性来换取可用性的例子:

      • 假设有两台机器M1和M2,M1上有副本V1,M2上有副本V2,以及两个进程P1,P2

      image-20231009150812146

      • 假设M1上有一个进程对副本P1进行更新操作,需要将更新后的值传播到M2机器,进程P2将其从副本v2中读出

        image-20231009151113261

      • 假设在更新值的传播过程中断,如果要保证可用性,进程p2立即读取v2的值,读到的肯定是不一致的数据;如果需要保证一致性,就一直等到故障恢复后,再从v2中读取数据,中间可能过去了很长时间,无法保证可用性

    • 在面对CAP理论的时有以下几种选择:

      • CA:放弃分区容忍性

      • CP:放弃可用性

      • AP:放弃一致性

        image-20231009151559463

    • 不同产品在CAP理论下的不同设计原则

      image-20231009151703254

    BASE理论:
    • BASE:是Basically Available Soft state和Eventual consistency的简写,意思为“碱”

    • ACID:是关系型数据库的事务的四个性质,NoSQL中的BASE(j碱)和ACID(酸)是对应关系

    • Basically Available:指当分布式系统的一部分发生问题变得不可用时,其他部分仍然可以正常使用、也就是允许分区失败的情形出现

    • Soft state(软状态):

      • 硬状态:要求数据库的状态必须一直保持数据一致性,就是任意时刻的数据都是正确的
      • 软状态:指状态可以有一段时间不同步,具有一定的滞后性
    Eventual consistency(最终一致性):
    • 强一致性:执行一个更新操作之后,后续的其他操作都能读到你更新的最终数据

    • 弱一致性:执行一个更新操作之后,后续的其他操作不能读到你更新的最终数据;弱一致性可能有一段时间的不一致,但是最终会达到一致状态

      image-20231009152554454

    • 最终一致性:根据更新数据后各进程访问到数据的时间和方式不同,可以区分为

      • 因果一致性

      • “读己之所写”一致性

      • 单调读一致性

      • 会话一致性

      • 单调写一致性

        image-20231009152907976

        image-20231009152953891

    • 如何实现各种类型的一致性?

      • 假设有一个分布式系统:为了实现它的可靠性,要对数据进行冗余存储

      • 假设N表示数据冗余的份数、W表示更新数据时需要保证写完成的节点数,R表示读取数据的时候需要读取的节点数

        image-20231009153751138

    • 实例:

      image-20231009153906443

    5.5 从NoSQL到NewSQL数据库

    • 数据库发展

    image-20231009154302857

    • 应用场景

      image-20231009154352962

    • NewSQL数据库同时具备OldSQL数据库和NoSQL数据库各自的优点

      • 具有非常好的水平可扩展性

      • 具有强一致性

      • 具有事务一致性

      • 支持SQL查询

      • 支持海量的数据存储

    • 关系型数据库、NoSQL和NewSQL数据库产品分类图

      image-20231009154642028

    5.6 文档数据库MongoDB

    • MongoDB简介

      • MongoDB是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统

      • 在高负载的情况下,添加更多的节点,可以保证服务器性能

      • MongoDB旨在为WEB应用提供可扩展的高性能数据存储解决方案

      • 文档结构:数据结构由键值对组成的MongoDB文档类似于JSON对象

        image-20231009155054221

    • MongoDB特点:

      • 提供一个面向文档存储,操作起来比较简单和容易
      • 可以设置任何属性的索引,实现更快的排序
      • 具有较好的水平可扩展性
      • 支持丰富的查询表达式,可查询文档中内嵌的对象及数组
      • 可替换已完成文档某个指定的数据字段
      • MongoDB中的MapReduce主要是用来对数据进行批处理和聚合操作
      • 安装过程简单
    • MongoDB的概念解析:

      image-20231009155443019

    • 实例:

      image-20231009155540085

    • 关系数据库设计以及MongDB设计实例

      • 关系表的设计可能设计多表连接查询

      image-20231009155632197

      • MongDB使用一个文档就能表现这些信息

        image-20231009155819389

    • MgonDB数据库相关结构内容

      • 一个MongDB中可以建立多个数据库
      • MongoDB的默认数据库为“db”,该数据库存储在data目录中
      • MongoDB的单个实例可以容纳多个独立的数据库,每一个都有自己的集合和权限不同的数据库也放置在不同的文件中
    • 文档概念:

      image-20231009160059554

    • RDBMS与MongoDB对应术语

      image-20231009160208921

      image-20231009160240991

    • 集合概念:集合类似于RDMS中的表格image-20231009160447367

    • MongoDB shell访问MongoDB

      image-20231009160634046

    • 使用JAVA程序访问MongoDB

      • 环境配置

        image-20231009160726403

      • 连接数据库

        image-20231009160746645

      • 创建集合

        image-20231009160837342

      • 插入文档

        image-20231009160909926

  • 相关阅读:
    flask 和fastdeploy 快速部署 yolov3
    权限系统的设计
    python-自动化篇-运维-网络-IP
    Leetcode.2731 移动机器人
    JavaWeb
    【Spring项目中的Service理解】
    Docker开放远程安全访问(开启2376端口和CA认证)
    centos7安装mysql5.7
    26 行为型模式-命令模式
    【云原生】springcloud10——人生苦短,我用OpenFeign
  • 原文地址:https://blog.csdn.net/weixin_44911248/article/details/133756548