• TensorFlow入门(十二、分布式训练)


    1、按照并行方式来分

            ①模型并行

                    假设我们有n张GPU,不同的GPU被输入相同的数据,运行同一个模型的不同部分。

                    在实际训练过程中,如果遇到模型非常庞大,一张GPU不够存储的情况,可以使用模型并行的分布式训练,把模型的不同部分交给不同的GPU负责。这种方式存在一定的弊端:①这种方式需要不同的GPU之间通信,从而产生较大的通信成本。②由于每个GPU上运行的模型部分之间存在一定的依赖,导致规模伸缩性差。

            ②数据并行

                    假设我们有n张GPU,不同的GPU被输入不同的数据,运行相同的完整的模型。

                    如果遇到一张GPU就能够存下一个模型的情况,可以采用数据并行的方式,这种方式的各部分独立,伸缩性好。

    2、按照更新方式来分

            采用数据并行方式时,由于每个GPU负责一部分数据,涉及到如何更新参数的问题,因此分为同步更新和异步更新两种方式。

            ①同步更新

                    所有GPU计算完每一个batch(也就是每批次数据)后,再统一计算新权值,等所有GPU同步新值后,再开始进行下一轮计算。

                    同步更新的好处是loss的下降比较稳定,但是这个的坏处也很明显,这种方式有等待,处理的速度取决于最慢的那个GPU计算的时间。

            ②异步更新

                    每个GPU计算完梯度后,无需等待其他GPU更新,立即更新整体权值并同步。

                    异步更新的好处是计算速度快,计算资源能得到充分利用,但是缺点是loss的下降不稳定,抖动大。

    3、按照算法来分

            ①Parameter Sever算法

                    原理:假设我们有n张GPU,GPU0将数据分成n份分到各张GPU上,每张GPU负责自己那一批次数据的训练,得到梯度后,返回给GPU0上做累计,得到更新的权重参数后,再分发给各张GPU。

            ②Ring AllReduce算法

                    原理:假设我们有n张GPU,它们以环形相连,每张GPU都有一个左邻和一个右邻,每张GPU向各自的右邻发送数据,并从它的左邻接近数据。循环n-1次完成梯度积累,再循环n-1次做参数同步。整个算法过程分两个步骤进行:首先是scatter_reduce,然后是allgather。在scatter-reduce,然后是allgather。在scatter-reduce步骤中,GPU将交换数据,使每个GPU可得到最终结果的一个块。在allgather步骤中,gpu将交换这些块,以便所有gpu得到完整的最终结果。

    tf.distribute API:

            它是TensorFlow在多GPU、多机器上进行分布式训练用的API。使用这个API,可以在尽可能少改动代码的同时,分布式训练模型。

            它的核心API是tf.distribute.Strategy,只需简单几行代码就可以实现单机多GPU,多机多GPU等情况的分布式训练。

            它的主要优点:

                    ①简单易用,开箱即用,高性能

                    ②便于各种分布式Strategy切换

                    ③支持Custom Training Loop、Estimator、Keras

                    ④支持eager excution

    tf.distribute.Strategy目前主要有四个Strategy:

            ①MirroredStrategy,即镜像策略

                    MirroredStrategy用于单机多GPU、数据并行、同步更新的情况,它会在每个GPU上保存一份模型副本,模型中的每个变量都镜像在所有副本中。这些变量一起形成一个名为MirroredVariable的概念变量。通过apply相同的更新,这些变量保持彼此同步。

                    创建一个镜像策略的方法如下:

                            mirrored_strategy = tf.distribute.MirroredStrategy()

                    也可以自定义用哪些devices,如:

                            mirrored_strategy = tf.distribute.MirroredStrategy(devices=["/gpu:0","/gpu:1"])

                    训练过程中,镜像策略用了高效的All-reduce算法来实现设备之间变量的传递更新。默认情况下它使用NVIDA NCCL (tf.distribute.NcclAllReduce)作为all-reduce算法的实现。通过apply相同的更新,这些变量保持彼此同步。

                    官方也提供了其他的一些all-reduce实现方法,可供选择,如:

                            tf.distribute.CrossDeviceOps

                            tf.distribute.HierarchicalCopyAllReduce

                            tf.distribute.ReductionToOneDevice

            ②CentralStorageStrategy,即中心存储策略

                    使用该策略时,参数被统一存在CPU里,然后复制到所有GPU上,它的优点是通过这种方式,GPU是负载均衡的,但一般情况下CPU和GPU通信代价比较大。

                    创建一个中心存储策略的方法如下:

                                 central_storage_strategy = tf.distribute.experimental.CentralStorageStratygy()

            ③MultiWorkerMirroredStrategy,即多端镜像策略

                    该API和MirroredStrategy类似,它是其多机多GPU分布式训练的版本。

                    创建一个多端镜像策略的方法如下:

                                 multiworker_strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()

            ④ParameterServerStrategy,即参数服务策略

                    简称PS策略,由于计算速度慢和负载不均衡,很少使用这种策略。

                    创建一个参数服务策略的方法如下:

                                  ps_strategy = tf.distribute.experimental.ParameterServerStrategy()

    示例代码如下:

    1. import tensorflow as tf
    2. #设置总训练轮数
    3. num_epochs = 5
    4. #设置每轮训练的批大小
    5. batch_size_per_replica = 64
    6. #设置学习率,指定了梯度下降算法中用于更新权重的步长大小
    7. learning_rate = 0.001
    8. #创建镜像策略
    9. strategy = tf.distribute.MirroredStrategy()
    10. #通过同步更新时副本的数量计算出本机的GPU设备数量
    11. print("Number of devices: %d"% strategy.num_replicas_in_sync)
    12. #通过副本数量乘以每轮训练的批大小,得出训练总数据量的大小
    13. batch_size = batch_size_per_replica * strategy.num_replicas_in_sync
    14. #函数将输入的图片调整为224x224大小,再将像素值除以255进行归一化,同时返回标签信息
    15. def resize(image,label):
    16. image = tf.image.resize(image,[224,224])/255.0
    17. return image,label
    18. #载入数据集并预处理
    19. dataset,_ = tf.keras.datasets.cifar10.load_data()
    20. images,labels = dataset
    21. dataset = tf.data.Dataset.from_tensor_slices((images, labels))
    22. dataset = dataset.map(resize).shuffle(1024).batch(batch_size)
    23. #在strategy.scope下创建模型和优化器
    24. with strategy.scope():
    25. #载入了MobileNetV2模型,该模型在ImageNet上预先训练好了,并可以在分类问题上进行微调
    26. model = tf.keras.applications.MobileNetV2()
    27. #设置训练时用的优化器、损失函数和准确率评测标准
    28. model.compile(
    29. optimizer = tf.keras.optimizers.Adam(learning_rate = learning_rate),
    30. loss = tf.keras.losses.sparse_categorical_crossentropy,
    31. metrics = [tf.keras.metrics.sparse_categorical_accuracy]
    32. )
    33. #执行训练过程
    34. model.fit(dataset,epochs = num_epochs)

    对于CIFAR-10数据集下载过慢的问题,可以手动去官网下载

    https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gzicon-default.png?t=N7T8https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz下载完成后将其放在如下图的路径下,并将数据集文件改名为cifar-10-batches-py.tar.gz并解压

  • 相关阅读:
    【Day24】常用类
    磁盘阵列(RAID)级别的简单介绍
    【批量区域识别内容重命名】批量识别图片区域文字并重命名,批量图片部分识别内容重命文件,PDF区域识别提取重命名
    Java String.valueOf()方法具有什么功能呢?
    使用ssh在本地环境(Windows)连接虚拟机以及其中的docker容器
    现在人都不练习打字了?爬取单词自制仙草打字练习
    VSCode配置C/C++环境
    Java反射详解
    图像基础知识、深度学习基础知识以及相关问题
    [LeetCode解题报告] 30. 串联所有单词的子串
  • 原文地址:https://blog.csdn.net/Victor_Li_/article/details/133679286