本文是LLM系列文章,针对《EVALUATING HALLUCINATIONS IN CHINESE LARGE LANGUAGE MODELS》的翻译。
在本文中,我们建立了一个名为HalluQA (Chinese Hallucination question - answers)的基准来测量中文大型语言模型中的幻觉现象。HalluQA包含450个精心设计的对抗性问题,跨越多个领域,并考虑到中国的历史文化,习俗和社会现象。在构建HalluQA的过程中,我们考虑了两种类型的幻觉:模仿虚假和事实错误,并基于GLM-130B和ChatGPT构建了对抗性样本。为了评估,我们设计了一种使用GPT-4的自动评估方法来判断模型输出是否存在幻觉。我们在ERNIE-Bot、百川2、ChatGLM、Qwen、SparkDesk等24个大型语言模型上进行了大量的实验。在24个模型中,18个模型的无幻觉率低于50%。这表明《HalluQA》具有很高的挑战性。我们分析了不同类型模型中幻觉的主要类型及其原因。此外,我们还讨论了不同类型