目录
Inputs
-------------------------
name:input
tensor:Float[1, 3, 256, 256]
---------------------------------------------------------------
Outputs
-------------------------
name:output
tensor:Float[1, 3, 256, 256]
---------------------------------------------------------------
VS2022
.net framework 4.8
OpenCvSharp 4.8
Microsoft.ML.OnnxRuntime 1.16.2
创建Tensor
for (int y = 0; y < resize_image.Height; y++)
{
for (int x = 0; x < resize_image.Width; x++)
{
input_tensor[0, 0, y, x] = (resize_image.At
input_tensor[0, 1, y, x] = (resize_image.At
input_tensor[0, 2, y, x] = (resize_image.At
}
}
- using Microsoft.ML.OnnxRuntime;
- using Microsoft.ML.OnnxRuntime.Tensors;
- using OpenCvSharp;
- using System;
- using System.Collections.Generic;
- using System.Drawing;
- using System.Linq;
- using System.Threading.Tasks;
- using System.Windows.Forms;
-
-
- namespace 人像卡通化
- {
- public partial class Form1 : Form
- {
- public Form1()
- {
- InitializeComponent();
- }
-
- string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
- string image_path = "";
- string startupPath;
- DateTime dt1 = DateTime.Now;
- DateTime dt2 = DateTime.Now;
- string model_path;
- Mat image;
- Mat result_image;
- int modelSize = 256;
-
- SessionOptions options;
- InferenceSession onnx_session;
- Tensor<float> input_tensor;
- List<NamedOnnxValue> input_ontainer;
- IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
- DisposableNamedOnnxValue[] results_onnxvalue;
-
- Tensor<float> result_tensors;
- float[] result_array;
-
- private void button1_Click(object sender, EventArgs e)
- {
- OpenFileDialog ofd = new OpenFileDialog();
- ofd.Filter = fileFilter;
- if (ofd.ShowDialog() != DialogResult.OK) return;
- pictureBox1.Image = null;
- image_path = ofd.FileName;
- pictureBox1.Image = new Bitmap(image_path);
- textBox1.Text = "";
- image = new Mat(image_path);
- pictureBox2.Image = null;
- }
-
- private void button2_Click(object sender, EventArgs e)
- {
- if (image_path == "")
- {
- return;
- }
-
- textBox1.Text = "";
- pictureBox2.Image = null;
-
- int oldwidth = image.Cols;
- int oldheight = image.Rows;
-
- //缩放图片大小
- int maxEdge = Math.Max(image.Rows, image.Cols);
- float ratio = 1.0f * modelSize / maxEdge;
- int newHeight = (int)(image.Rows * ratio);
- int newWidth = (int)(image.Cols * ratio);
- Mat resize_image = image.Resize(new OpenCvSharp.Size(newWidth, newHeight));
- int width = resize_image.Cols;
- int height = resize_image.Rows;
- if (width != modelSize || height != modelSize)
- {
- resize_image = resize_image.CopyMakeBorder(0, modelSize - newHeight, 0, modelSize - newWidth, BorderTypes.Constant, new Scalar(255, 255, 255));
- }
-
- Cv2.CvtColor(resize_image, resize_image, ColorConversionCodes.BGR2RGB);
-
- // 输入Tensor
- for (int y = 0; y < resize_image.Height; y++)
- {
- for (int x = 0; x < resize_image.Width; x++)
- {
- input_tensor[0, 0, y, x] = (resize_image.At<Vec3b>(y, x)[0] / 255f - 0.5f) / 0.5f;
- input_tensor[0, 1, y, x] = (resize_image.At<Vec3b>(y, x)[1] / 255f - 0.5f) / 0.5f;
- input_tensor[0, 2, y, x] = (resize_image.At<Vec3b>(y, x)[2] / 255f - 0.5f) / 0.5f;
- }
- }
-
- //将 input_tensor 放入一个输入参数的容器,并指定名称
- input_ontainer.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor));
-
- dt1 = DateTime.Now;
- //运行 Inference 并获取结果
- result_infer = onnx_session.Run(input_ontainer);
- dt2 = DateTime.Now;
-
- //将输出结果转为DisposableNamedOnnxValue数组
- results_onnxvalue = result_infer.ToArray();
-
- //读取第一个节点输出并转为Tensor数据
- result_tensors = results_onnxvalue[0].AsTensor<float>();
-
- result_array = result_tensors.ToArray();
-
- float[] temp_r = new float[256 * 256];
- float[] temp_g = new float[256 * 256];
- float[] temp_b = new float[256 * 256];
-
- Array.Copy(result_array, temp_r, 256 * 256);
- Array.Copy(result_array, 256 * 256, temp_g, 0, 256 * 256);
- Array.Copy(result_array, 256 * 256 * 2, temp_b, 0, 256 * 256);
-
- Mat rmat = new Mat(256, 256, MatType.CV_32F, temp_r);
- Mat gmat = new Mat(256, 256, MatType.CV_32F, temp_g);
- Mat bmat = new Mat(256, 256, MatType.CV_32F, temp_b);
-
- rmat = (rmat + 1f) * 127.5f;
- gmat = (gmat + 1f) * 127.5f;
- bmat = (bmat + 1f) * 127.5f;
-
- result_image = new Mat();
- Cv2.Merge(new Mat[] { rmat, gmat, bmat }, result_image);
-
- if (!result_image.Empty())
- {
- //还原图像大小
- if (width != modelSize || height != modelSize)
- {
- Rect rect = new Rect(0, 0, width, height);
- result_image = result_image.Clone(rect);
- }
- result_image = result_image.Resize(new OpenCvSharp.Size(oldwidth, oldheight));
-
- pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
- textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
- }
- else
- {
- textBox1.Text = "无信息";
- }
- }
-
- private void Form1_Load(object sender, EventArgs e)
- {
- startupPath = System.Windows.Forms.Application.StartupPath;
- model_path = startupPath + "\\photo2cartoon_weights.onnx";
-
- // 创建输出会话,用于输出模型读取信息
- options = new SessionOptions();
- options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
- // 设置为CPU上运行
- options.AppendExecutionProvider_CPU(0);
-
- // 创建推理模型类,读取本地模型文件
- onnx_session = new InferenceSession(model_path, options);
-
- // 输入Tensor
- input_tensor = new DenseTensor<float>(new[] { 1, 3, 256, 256 });
-
- // 创建输入容器
- input_ontainer = new List<NamedOnnxValue>();
- }
- }
- }
if (pictureBox2.Image == null)
{
return;
}
Bitmap output = new Bitmap(pictureBox2.Image);
var sdf = new SaveFileDialog();
sdf.Title = "保存";
sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
if (sdf.ShowDialog() == DialogResult.OK)
{
switch (sdf.FilterIndex)
{
case 1:
{
output.Save(sdf.FileName, ImageFormat.Jpeg);
break;
}
case 2:
{
output.Save(sdf.FileName, ImageFormat.Png);
break;
}
case 3:
{
output.Save(sdf.FileName, ImageFormat.Bmp);
break;
}
case 4:
{
output.Save(sdf.FileName, ImageFormat.Emf);
break;
}
case 5:
{
output.Save(sdf.FileName, ImageFormat.Exif);
break;
}
case 6:
{
output.Save(sdf.FileName, ImageFormat.Gif);
break;
}
case 7:
{
output.Save(sdf.FileName, ImageFormat.Icon);
break;
}
case 8:
{
output.Save(sdf.FileName, ImageFormat.Tiff);
break;
}
case 9:
{
output.Save(sdf.FileName, ImageFormat.Wmf);
break;
}
}
MessageBox.Show("保存成功,位置:" + sdf.FileName);
}
1、该例子只是人像转卡通像,转之前需要如下前置处理(为了效果更好)
2、该模型不能用于分割半身像,因为该模型是专用模型,需先裁剪出人脸区域再输入
人像分割参考:
C# PaddleInference.PP-HumanSeg 人像分割 替换背景色-CSDN博客
人脸检测参考:
C# DlibDotNet 人脸识别、人脸68特征点识别、人脸5特征点识别、人脸对齐,三角剖分,人脸特征比对-CSDN博客
3、参考
GitHub - minivision-ai/photo2cartoon-paddle: 人像卡通化探索项目 (photo-to-cartoon translation project)