欢迎关注我的公众号 [极智视界],获取我的更多经验分享
大家好,我是极智视界,本文来介绍一下 大模型优化之KV Cache。
邀您加入我的知识星球「极智视界」,星球内有超多好玩的项目实战源码下载,链接:https://t.zsxq.com/0aiNxERDq
在大模型的优化中经常会听到的一个技术叫 KV Cache,要理解这个技术需要你有基本的大模型概念以及 Transformer 基础。KV Cache 的全称是 key-value cache,可以简单理解为对大模型推理过程中的 key-value 缓存的优化。如果不对大模型推理过程中的 key-value 缓存进行优化,它会随着对话的增加而不断增加,也就是所占用的内存会不断动态增加,而且这种动态内存增加是不太可控的,这就像软件里的内存溢出一样。不去做 KV Cache,会对大规模推理造成几个压力:(1) 频繁的开辟增加内存;(2) 内存很快就不够用了;(3) 增加了很多冗余矩阵计算量。所以进行 KV 缓存优化是大规模训练、推理里很重要的一个环节。KV Cache 采用以空间换时间的思想,复用上次推理的 KV 缓存,可以极大降低内存压力、提高推理性能,而且不会影响任何计算精度。
以 GPT 为代表的一个 token 一个 token 往外蹦的 AIGC 大模型为例,里面最主要的结构就是 transformer 中的 self-attention 结构的堆叠,实质是