GPU工作模式:
CUDA程序的基本框架为:
头文件包含
常量定义/宏定义
C++ 自定义函数和CUDA核函数声明
int main(void)
{
分配主机与设备内存
初始化主机中的数据
将部分数据从主机拷贝至设备
调用核函数在设备中进行计算
将部分数据从设备拷贝至主机
释放主机与设备内存
}
c++ 自定义函数与CUDA核函数定义
例:
#include
#include "cuda_runtime.h"
#include
#include
//cuda内存 x[] + y[] = Z[]
//1.分配内存 2.内存拷贝 3.执行核函数 4.内存拷贝
__global__ void vecAdd(const double *x, const double *y,double *z, int count)
{
const int index = blockDim.x * blockIdx.x + threadIdx.x;//使用索引让每个线程找到其要处理的数据
//t00 t01 t02
//t10 t11 t12 [当前block之前有多少线程] +[当前线程中的排序]
//t20 t21 t22 t21 (7) = blockDim(3)*blockIdx(2) + threadIdx(1)
if (index < count)
{
z[index] = x[index] + y[index];
}
}
void vecAdd_cpu(const double *x, const double *y, double *z, int count)
{
for (int i = 0; i < count; i++)
{
z[i] = x[i] + y[i];
}
}
int main()
{
const int N = 1000;
const int M = sizeof(double) * N;
//cup内存分配
double *h_x = (double*)malloc(M);
double *h_y = (double*)malloc(M);
double *h_z = (double*)malloc(M);
double *result_cpu = (double*)malloc(M);
//GPU内存分配
double *d_x, *d_y, *d_z;
cudaMalloc((void**)&d_x, M);
cudaMalloc((void**)&d_y, M);
cudaMalloc((void**)&d_z, M);
for (int i=0;i<N;++i)
{
h_x[i] = 1;
h_y[i] = 2;
}
//cpu数据传输到GPU
cudaMemcpy(d_x, h_x, M, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, h_y, M, cudaMemcpyHostToDevice);
//调用核函数
const int block_size = 128;
const int gride_size = (N + block_size - 1) / block_size;
vecAdd <<< gride_size, block_size>>> (d_x,d_y,d_z,N);
//GPU数据传输到cpu
cudaMemcpy(h_z, d_z, M, cudaMemcpyDeviceToHost);
//cpu计算
vecAdd_cpu(h_x, h_y, result_cpu, N);
bool error = false;
for (int i = 0; i < N; i++)
{
if (fabs(result_cpu[i]-h_z[i])>(1.0e-10))
{
error = true;
}
printf("h_z[%d]: %f \n", i, h_z[i]);
}
printf("Result: %s\n", error ? "Errors" : "Pass");
free(h_x);
free(h_y);
free(h_z);
cudaFree(d_x);
cudaFree(d_y);
cudaFree(d_z);
}
cudaError_t cudaMalloc(void **address, size_t size); CUDA中设备内存动态分配
cudaError_t cudaFree(void* address) CUDA中释放内存
cudaError_t cudaMemcpy(void *dst, const void *src, size_t count, size_t count, enum cudaMemcpyKind kind); CUDA中主机与设备之间数据传递。
cuda矩阵运算 例:
#include
#include "cuda_runtime.h"
#include
#include
#include
#define BLOCK_SIZE 16
//cuda矩阵运算 a[][] * b[][] = c[][]
//1.分配内存 2.内存拷贝 3.执行核函数 4.内存拷贝
__global__ void gpu_matrix_mult(int *a, int *b, int *c, const int size)
{
int y = blockDim.y *blockIdx.y + threadIdx.y;
int x = blockDim.x*blockIdx.x + threadIdx.x;
int tmp = 0;
if (x<size && y<size)
{
for (int step = 0; step < size; step++)
{
tmp += a[y*size + step] * b[step*size + x];
}
c[y*size + x] = tmp;
}
}
void cpu_matrix_mult(int *a, int *b, int *c, const int size)
{
for (int y = 0; y < size; y++)
{
for (int x = 0; x < size; x++)
{
int tmp = 0;
for (int step = 0; step < size; step++)
{
tmp += a[y*size + step] * b[step * size + x];
}
c[y * size + x] = tmp;
}
}
}
int main()
{
int matrix_size = 1000;
int memsize = sizeof(int) * matrix_size * matrix_size;
//cup上分配内存
int *h_a, *h_b, *h_c, *h_cc;
cudaMallocHost((void**)&h_a, memsize);
cudaMallocHost((void**)&h_b, memsize);
cudaMallocHost((void**)&h_c, memsize);
cudaMallocHost((void**)&h_cc, memsize);
for (int y = 0; y < matrix_size; y++)
{
for (int x = 0; x < matrix_size; x++)
{
h_a[y*matrix_size + x] = rand() % 1024;
h_b[y*matrix_size + x] = rand() % 1024;
}
}
//GPU上分配内存
int *d_a, *d_b, *d_c;
cudaMalloc((void**)&d_a, memsize);
cudaMalloc((void**)&d_b, memsize);
cudaMalloc((void**)&d_c, memsize);
//将cpu数据拷贝到GPU
cudaMemcpy(d_a, h_a, memsize, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, h_b, memsize, cudaMemcpyHostToDevice);
unsigned int grid_rows = (matrix_size + BLOCK_SIZE - 1) / BLOCK_SIZE;
unsigned int grid_cols = (matrix_size + BLOCK_SIZE - 1) / BLOCK_SIZE;
dim3 dimGrid(grid_cols, grid_rows);
//gpu warp 32个线程共享一个物理端 因此尽量为32的整数倍
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);// x*y*z<=1024 z未定义 默认为1
gpu_matrix_mult << <dimGrid, dimBlock >> > (d_a, d_b, d_c, matrix_size);
cudaMemcpy(h_c, d_c, memsize, cudaMemcpyDeviceToHost);
cpu_matrix_mult(h_a, h_b, h_cc, matrix_size);
bool errors = false;
for (int y = 0; y < matrix_size; y++)
{
printf("%d \n", y);
for (int x = 0; x < matrix_size; x++)
{
if (fabs(h_cc[y*matrix_size + x] - h_c[y*matrix_size + x]) >(1.0e-10))
{
errors = true;
}
}
}
printf("Result: %s\n", errors ? "Errors" : "Passed");
cudaFreeHost(h_a);
cudaFreeHost(h_b);
cudaFreeHost(h_c);
cudaFreeHost(h_cc);
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);
}