• OpenCV实现求解单目相机位姿


            单目相机通过对极约束来求解相机运动的位姿。参考了ORBSLAM中单目实现的代码,这里用opencv来实现最简单的位姿估计.

     

    1. mLeftImg = cv::imread(lImg, cv::IMREAD_GRAYSCALE);
    2. mRightImg = cv::imread(rImg, cv::IMREAD_GRAYSCALE);
    3. cv::Ptr<ORB> OrbLeftExtractor = cv::ORB::create();
    4. cv::Ptr<ORB> OrbRightExtractor = cv::ORB::create();
    5. OrbLeftExtractor->detectAndCompute(mLeftImg, noArray(), mLeftKps, mLeftDes);
    6. OrbRightExtractor->detectAndCompute(mRightImg, noArray(), mRightKps, mRightDes);
    7. Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create(DescriptorMatcher::BRUTEFORCE_HAMMING);
    8. matcher->match(mLeftDes, mRightDes, mMatches);

     首先通过ORB特征提取,获取两幅图像的匹配度,我将其连线出来的效果:

     

    RANSAC的算法原理可以google,很容易理解。先看看ORBSLAM中的实现:

    1. bool Initializer::Initialize(const Frame &CurrentFrame, const vector<int> &vMatches12, cv::Mat &R21, cv::Mat &t21,
    2. vector<cv::Point3f> &vP3D, vector<bool> &vbTriangulated)
    3. {
    4. // Fill structures with current keypoints and matches with reference frame
    5. // Reference Frame: 1, Current Frame: 2
    6. // Frame2 特征点
    7. mvKeys2 = CurrentFrame.mvKeysUn;
    8. // mvMatches12记录匹配上的特征点对
    9. mvMatches12.clear();
    10. mvMatches12.reserve(mvKeys2.size());
    11. // mvbMatched1记录每个特征点是否有匹配的特征点,
    12. // 这个变量后面没有用到,后面只关心匹配上的特征点
    13. mvbMatched1.resize(mvKeys1.size());
    14. // 步骤1:组织特征点对
    15. for(size_t i=0, iend=vMatches12.size();i<iend; i++)
    16. {
    17. if(vMatches12[i]>=0)
    18. {
    19. mvMatches12.push_back(make_pair(i,vMatches12[i]));
    20. mvbMatched1[i]=true;
    21. }
    22. else
    23. mvbMatched1[i]=false;
    24. }
    25. // 匹配上的特征点的个数
    26. const int N = mvMatches12.size();
    27. // Indices for minimum set selection
    28. // 新建一个容器vAllIndices,生成0到N-1的数作为特征点的索引
    29. vector<size_t> vAllIndices;
    30. vAllIndices.reserve(N);
    31. vector<size_t> vAvailableIndices;
    32. for(int i=0; i<N; i++)
    33. {
    34. vAllIndices.push_back(i);
    35. }
    36. // Generate sets of 8 points for each RANSAC iteration
    37. // **步骤2:在所有匹配特征点对中随机选择8对匹配特征点为一组,共选择mMaxIterations组 **
    38. // 用于FindHomography和FindFundamental求解
    39. // mMaxIterations:200
    40. mvSets = vector< vector<size_t> >(mMaxIterations,vector<size_t>(8,0));
    41. DUtils::Random::SeedRandOnce(0);
    42. for(int it=0; it<mMaxIterations; it++)
    43. {
    44. vAvailableIndices = vAllIndices;
    45. // Select a minimum set
    46. for(size_t j=0; j<8; j++)
    47. {
    48. // 产生0到N-1的随机数
    49. int randi = DUtils::Random::RandomInt(0,vAvailableIndices.size()-1);
    50. // idx表示哪一个索引对应的特征点被选中
    51. int idx = vAvailableIndices[randi];
    52. mvSets[it][j] = idx;
    53. // randi对应的索引已经被选过了,从容器中删除
    54. // randi对应的索引用最后一个元素替换,并删掉最后一个元素
    55. vAvailableIndices[randi] = vAvailableIndices.back();
    56. vAvailableIndices.pop_back();
    57. }
    58. }
    59. // Launch threads to compute in parallel a fundamental matrix and a homography
    60. // 步骤3:调用多线程分别用于计算fundamental matrix和homography
    61. vector<bool> vbMatchesInliersH, vbMatchesInliersF;
    62. float SH, SF; // score for H and F
    63. cv::Mat H, F; // H and F
    64. // ref是引用的功能:http://en.cppreference.com/w/cpp/utility/functional/ref
    65. // 计算homograpy并打分
    66. thread threadH(&Initializer::FindHomography,this,ref(vbMatchesInliersH), ref(SH), ref(H));
    67. // 计算fundamental matrix并打分
    68. thread threadF(&Initializer::FindFundamental,this,ref(vbMatchesInliersF), ref(SF), ref(F));
    69. // Wait until both threads have finished
    70. threadH.join();
    71. threadF.join();
    72. // Compute ratio of scores
    73. // 步骤4:计算得分比例,选取某个模型
    74. float RH = SH/(SH+SF);
    75. // Try to reconstruct from homography or fundamental depending on the ratio (0.40-0.45)
    76. // 步骤5:从H矩阵或F矩阵中恢复R,t
    77. if(RH>0.40)
    78. return ReconstructH(vbMatchesInliersH,H,mK,R21,t21,vP3D,vbTriangulated,1.0,50);
    79. else //if(pF_HF>0.6)
    80. return ReconstructF(vbMatchesInliersF,F,mK,R21,t21,vP3D,vbTriangulated,1.0,50);
    81. return false;
    82. }

     

    orbslam首先是从配对特征中随机迭代mMaxIterations次,每一次都从配对点中选出8个点用来计算homography和fundamental矩阵,都是用SVD来计算的,如下:

    FindFundamental:

    1. void Initializer::FindFundamental(vector<bool> &vbMatchesInliers, float &score, cv::Mat &F21)
    2. {
    3. // Number of putative matches
    4. const int N = vbMatchesInliers.size();
    5. // 分别得到归一化的坐标P1和P2
    6. vector<cv::Point2f> vPn1, vPn2;
    7. cv::Mat T1, T2;
    8. Normalize(mvKeys1,vPn1, T1);
    9. Normalize(mvKeys2,vPn2, T2);
    10. cv::Mat T2t = T2.t();
    11. // Best Results variables
    12. score = 0.0;
    13. vbMatchesInliers = vector<bool>(N,false);
    14. // Iteration variables
    15. vector<cv::Point2f> vPn1i(8);
    16. vector<cv::Point2f> vPn2i(8);
    17. cv::Mat F21i;
    18. vector<bool> vbCurrentInliers(N,false);
    19. float currentScore;
    20. // Perform all RANSAC iterations and save the solution with highest score
    21. for(int it=0; it<mMaxIterations; it++)
    22. {
    23. // Select a minimum set
    24. for(int j=0; j<8; j++)
    25. {
    26. int idx = mvSets[it][j];
    27. vPn1i[j] = vPn1[mvMatches12[idx].first];
    28. vPn2i[j] = vPn2[mvMatches12[idx].second];
    29. }
    30. cv::Mat Fn = ComputeF21(vPn1i,vPn2i);
    31. F21i = T2t*Fn*T1; //解除归一化
    32. // 利用重投影误差为当次RANSAC的结果评分
    33. currentScore = CheckFundamental(F21i, vbCurrentInliers, mSigma);
    34. if(currentScore>score)
    35. {
    36. F21 = F21i.clone();
    37. vbMatchesInliers = vbCurrentInliers;
    38. score = currentScore;
    39. }
    40. }
    41. }

    通过ComputeF21计算本质矩阵,

    1. cv::Mat Initializer::ComputeF21(const vector<cv::Point2f> &vP1,const vector<cv::Point2f> &vP2)
    2. {
    3. const int N = vP1.size();
    4. cv::Mat A(N,9,CV_32F); // N*9
    5. for(int i=0; i<N; i++)
    6. {
    7. const float u1 = vP1[i].x;
    8. const float v1 = vP1[i].y;
    9. const float u2 = vP2[i].x;
    10. const float v2 = vP2[i].y;
    11. A.at<float>(i,0) = u2*u1;
    12. A.at<float>(i,1) = u2*v1;
    13. A.at<float>(i,2) = u2;
    14. A.at<float>(i,3) = v2*u1;
    15. A.at<float>(i,4) = v2*v1;
    16. A.at<float>(i,5) = v2;
    17. A.at<float>(i,6) = u1;
    18. A.at<float>(i,7) = v1;
    19. A.at<float>(i,8) = 1;
    20. }
    21. cv::Mat u,w,vt;
    22. cv::SVDecomp(A,w,u,vt,cv::SVD::MODIFY_A | cv::SVD::FULL_UV);
    23. cv::Mat Fpre = vt.row(8).reshape(0, 3); // v的最后一列
    24. cv::SVDecomp(Fpre,w,u,vt,cv::SVD::MODIFY_A | cv::SVD::FULL_UV);
    25. w.at<float>(2)=0; //2约束,将第3个奇异值设为0 //强迫约束
    26. return u*cv::Mat::diag(w)*vt;
    27. }

     

    看到用的是线性SVD解。

    通过重投影来评估本质矩阵的好坏。

    1. float Initializer::CheckFundamental(const cv::Mat &F21, vector<bool> &vbMatchesInliers, float sigma)
    2. {
    3. const int N = mvMatches12.size();
    4. const float f11 = F21.at<float>(0,0);
    5. const float f12 = F21.at<float>(0,1);
    6. const float f13 = F21.at<float>(0,2);
    7. const float f21 = F21.at<float>(1,0);
    8. const float f22 = F21.at<float>(1,1);
    9. const float f23 = F21.at<float>(1,2);
    10. const float f31 = F21.at<float>(2,0);
    11. const float f32 = F21.at<float>(2,1);
    12. const float f33 = F21.at<float>(2,2);
    13. vbMatchesInliers.resize(N);
    14. float score = 0;
    15. // 基于卡方检验计算出的阈值(假设测量有一个像素的偏差)
    16. const float th = 3.841; //置信度95%,自由度1
    17. const float thScore = 5.991;//置信度95%,自由度2
    18. const float invSigmaSquare = 1.0/(sigma*sigma);
    19. for(int i=0; i<N; i++)
    20. {
    21. bool bIn = true;
    22. const cv::KeyPoint &kp1 = mvKeys1[mvMatches12[i].first];
    23. const cv::KeyPoint &kp2 = mvKeys2[mvMatches12[i].second];
    24. const float u1 = kp1.pt.x;
    25. const float v1 = kp1.pt.y;
    26. const float u2 = kp2.pt.x;
    27. const float v2 = kp2.pt.y;
    28. // Reprojection error in second image
    29. // l2=F21x1=(a2,b2,c2)
    30. // F21x1可以算出x1在图像中x2对应的线l
    31. const float a2 = f11*u1+f12*v1+f13;
    32. const float b2 = f21*u1+f22*v1+f23;
    33. const float c2 = f31*u1+f32*v1+f33;
    34. // x2应该在l这条线上:x2点乘l = 0
    35. const float num2 = a2*u2+b2*v2+c2;
    36. const float squareDist1 = num2*num2/(a2*a2+b2*b2); // 点到线的几何距离 的平方
    37. const float chiSquare1 = squareDist1*invSigmaSquare;
    38. if(chiSquare1>th)
    39. bIn = false;
    40. else
    41. score += thScore - chiSquare1;
    42. // Reprojection error in second image
    43. // l1 =x2tF21=(a1,b1,c1)
    44. const float a1 = f11*u2+f21*v2+f31;
    45. const float b1 = f12*u2+f22*v2+f32;
    46. const float c1 = f13*u2+f23*v2+f33;
    47. const float num1 = a1*u1+b1*v1+c1;
    48. const float squareDist2 = num1*num1/(a1*a1+b1*b1);
    49. const float chiSquare2 = squareDist2*invSigmaSquare;
    50. if(chiSquare2>th)
    51. bIn = false;
    52. else
    53. score += thScore - chiSquare2;
    54. if(bIn)
    55. vbMatchesInliers[i]=true;
    56. else
    57. vbMatchesInliers[i]=false;
    58. }
    59. return score;
    60. }

    最后回到Initializer::Initialize,将单映矩阵和本质矩阵的得分进行比对,选出最合适的,就求出RT了。

    ORBSLAM2同时考虑了单应和本质,SLAM14讲中也说到,工程实践中一般都讲两者都计算出来选择较好的,不过效率上会影响比较多感觉。

    opencv实现就比较简单了,思路和上面的类似,只是现在只考虑本质矩阵。在之前获取到特征点之后,

    1. /*add ransac method for accurate match*/
    2. vector<Point2f> vLeftP2f;
    3. vector<Point2f> vRightP2f;
    4. for(auto& each:mMatches)
    5. {
    6. vLeftP2f.push_back(mLeftKps[each.queryIdx].pt);
    7. vRightP2f.push_back(mRightKps[each.trainIdx].pt);
    8. }
    9. vector<unsigned char> vTemp(vLeftP2f.size());
    10. /*计算本质矩阵,用RANSAC*/
    11. Mat transM = findEssentialMat(vLeftP2f, vRightP2f, cameraMatrix,RANSAC, 0.999, 1.0, vTemp);
    12. vector<DMatch> optimizeM;
    13. for(int i = 0; i < vTemp.size(); i++)
    14. {
    15. if(vTemp[i])
    16. {
    17. optimizeM.push_back(mMatches[i]);
    18. }
    19. }
    20. mMatches.swap(optimizeM);
    21. cout << transM<<endl;
    22. Mat optimizeP;
    23. drawMatches(mLeftImg, mLeftKps, mRightImg, mRightKps, mMatches, optimizeP);
    24. imshow("output5", optimizeP);

    看下结果:

    图片

     确实效果好多了,匹配准确度比之前的要好,之后我们就可以通过这个本质矩阵来计算RT了。

    1. Mat R, t, mask;
    2. recoverPose(transM, vLeftP2f, vRightP2f, cameraMatrix, R, t, mask);

    一个接口搞定。最后我们可以通过验证对极约束,来看看求出的位姿是否准确。

    定义检查函数:

    1. Mat cameraMatrix = (Mat_<double>(3,3) << CAM_FX, 0.0, CAM_CX, 0.0, CAM_FY, CAM_CY, 0.0, 0.0, 1.0);
    2. bool epipolarConstraintCheck(Mat CameraK, vector<Point2f>& p1s, vector<Point2f>& p2s, Mat R, Mat t)
    3. {
    4. for(int i = 0; i < p1s.size(); i++)
    5. {
    6. Mat y1 = (Mat_<double>(3,1)<<p1s[i].x, p1s[i].y, 1);
    7. Mat y2 = (Mat_<double>(3,1)<<p2s[i].x, p2s[i].y, 1);
    8. //T 的凡对称矩阵
    9. Mat t_x = (Mat_<double>(3,3)<< 0, -t.at<double>(2,0), t.at<double>(1,0),
    10. t.at<double>(2,0), 0, -t.at<double>(0,0),
    11. -t.at<double>(1,0),t.at<double>(0,0),0);
    12. Mat d = y2.t() * cameraMatrix.inv().t() * t_x * R * cameraMatrix.inv()* y1;
    13. cout<<"epipolar constraint = "<<d<<endl;
    14. }
    15. }

    最后可以看到结果都是趋近于0的,证明位姿还是比较准确的。

  • 相关阅读:
    点击后给导航添加样式
    dpi是什么?如何更改dpi?(仅个人笔记,可能有误)
    告诉你怎么让网站内容快速收录的技巧
    Leetcode.树形DP
    阿里云上如何过等保,收费标准怎么样?
    牛顿迭代法
    Excel 宏录制与VBA编程 —— 13、Excel内置函数的调用
    SpringMVC(Json和全局异常处理)
    软件定制开发具有以下特点|APP搭建|小程序
    Vue-ls监听变量的变化,不生效
  • 原文地址:https://blog.csdn.net/hulinhulin/article/details/133660027