在了解底层封装之前除了对set和map的使用情况要有一定了解,还需要先学习一下二叉搜索树,AVL树,红黑树这些数据结构。
【C++】二叉搜索树
【C++】AVL树 & 红黑树
enum Colour
{
RED,
BLACK
};
template<class T>
class RBTreeNode
{
public:
RBTreeNode(const T& data)
: _data(data)
, _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
{}
T _data;
RBTreeNode<T>* _left;
RBTreeNode<T>* _right;
RBTreeNode<T>* _parent;
Colour _col;
};
template<class T, class Ref, class Ptr>
// 红黑树的迭代器实现
class __RBTreeIterator
{
public:
typedef RBTreeNode<T> Node;
typedef __RBTreeIterator<T, Ref, Ptr> Self;
public:
__RBTreeIterator(Node* node)
: _node(node)
{}
Ref operator*()
{
return _node->_data;
}
Ptr operator->()
{
return &_node->_data;
}
bool operator!=(const Self& s) const
{
return _node != s._node;
}
bool operator==(const Self& s) const
{
return _node == s._node;
}
Self& operator++()
{
// 右子树不为空
if (_node->_right)
{
// ++就是找右子树的最左节点
Node* left = _node->_right;
while (left->_left)
{
left = left->_left;
}
_node = left;
}
// 右子树为空
else
{
// ++就是找不是其右孩子的祖先
Node* parent = _node->_parent;
Node* cur = _node;
while (parent && parent->_right == cur)
{
cur = cur->_parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
Self& operator--()
{
// 左子树不为空
if (_node->_left)
{
// --就是找左子树的最右节点
Node* right = _node->_left;
while (right->_right)
{
right = right->_right;
}
_node = right;
}
// 左子树为空
else
{
// --就是找不是其左孩子的祖先
Node* parent = _node->_parent;
Node* cur = _node;
while (parent && parent->_left == cur)
{
cur = cur->_parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
public:
Node* _node;
};
// KeyOfT: 用于获取T中的key的一个仿函数类
template<class K, class T, class KeyOfT>
class RBTree
{
private:
typedef RBTreeNode<T> Node;
public:
typedef __RBTreeIterator<T, T&, T*> iterator;
RBTree(Node* root = nullptr)
: _root(root)
{}
// begin() 就是找红黑树的最左节点
iterator begin()
{
Node* left = _root;
while (left && left->_left)
{
left = left->_left;
}
return iterator(left);
}
// 因为迭代器是左闭右开,所以end()的迭代器设置为空
iterator end()
{
return iterator(nullptr);
}
pair<iterator, bool> Insert(const T& data)
{
KeyOfT kot;
if (_root == nullptr)
{
_root = new Node(data);
_root->_col = BLACK;
return make_pair(iterator(_root), true);
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (kot(data) > kot(cur->_data))
{
parent = cur;
cur = cur->_right;
}
else if (kot(data) < kot(cur->_data))
{
parent = cur;
cur = cur->_left;
}
else
{
return make_pair(iterator(cur), false);
}
}
cur = new Node(data);
cur->_col = RED;
// 保存cur用于返回
Node* newnode = cur;
if (kot(data) > kot(parent->_data))
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
while (parent && parent->_col == RED)
{
Node* grandparent = parent->_parent;
if (parent == grandparent->_left)
{
Node* uncle = grandparent->_right;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandparent->_col = RED;
cur = grandparent;
parent = cur->_parent;
}
else
{
if (cur == parent->_left)
{
RotateR(grandparent);
parent->_col = BLACK;
grandparent->_col = RED;
}
else
{
RotateL(parent);
RotateR(grandparent);
cur->_col = BLACK;
grandparent->_col = RED;
}
break;
}
}
else
{
Node* uncle = grandparent->_left;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandparent->_col = RED;
cur = grandparent;
parent = cur->_parent;
}
else
{
if (cur == parent->_right)
{
RotateL(grandparent);
parent->_col = BLACK;
grandparent->_col = RED;
}
else
{
RotateR(parent);
RotateL(grandparent);
cur->_col = BLACK;
grandparent->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return make_pair(iterator(newnode), true);
}
private:
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
{
subRL->_parent = parent;
}
Node* ppNode = parent->_parent;
subR->_left = parent;
parent->_parent = subR;
if (_root == parent)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (ppNode->_left == parent)
{
ppNode->_left = subR;
}
else
{
ppNode->_right = subR;
}
subR->_parent = ppNode;
}
}
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
{
subLR->_parent = parent;
}
Node* ppNode = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
if (_root == parent)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (ppNode->_left == parent)
{
ppNode->_left = subL;
}
else
{
ppNode->_right = subL;
}
subL->_parent = ppNode;
}
}
private:
Node* _root;
};
#include "RBTree.h"
namespace zs
{
template<class K>
class set
{
public:
class SetKeyOfT
{
public:
const K& operator()(const K& key)
{
return key;
}
};
typedef typename RBTree<K, K, SetKeyOfT>::iterator iterator;
iterator begin()
{
return _t.begin();
}
iterator end()
{
return _t.end();
}
pair<iterator, bool> insert(const K& key)
{
return _t.Insert(key);
}
private:
// set的底层就是一棵红黑树
RBTree<K, K, SetKeyOfT> _t;
};
}
#include "RBTree.h"
namespace zs
{
template<class K, class V>
class map
{
public:
class MapKeyOfT
{
public:
const K& operator()(const pair<K, V>& kv)
{
return kv.first;
}
};
typedef typename RBTree<K, pair<K,V>, MapKeyOfT>::iterator iterator;
iterator begin()
{
return _t.begin();
}
iterator end()
{
return _t.end();
}
pair<iterator, bool> insert(const pair<K, V>& kv)
{
return _t.Insert(kv);
}
// map支持[]操作
V& operator[](const K& key)
{
pair<iterator, bool> ret = insert(make_pair(key, V()));
return ret.first->second;
}
private:
// map的底层就是一棵红黑树
RBTree<K, pair<K, V>, MapKeyOfT> _t;
};
}