一、写在前面
这一期,我们介绍CNN回归。
同样,这里使用这个数据:
《PLoS One》2015年一篇题目为《Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China》文章的公开数据做演示。数据为江苏省2004年1月至2012年12月肾综合症出血热月发病率。运用2004年1月至2011年12月的数据预测2012年12个月的发病率数据。
二、CNN回归
(1)原理
卷积神经网络(CNN)最初是为图像识别和处理而设计的,但它们已经被证明对于各种类型的序列数据,包括时间序列,也是有效的。以下是一些关于CNN在时间序列预测中应用的原理:
(a)局部感受野:
-CNN的关键特点是它的局部感受野,这意味着每个卷积核只查看输入数据的一个小部分。
-对于时间序列,这意味着CNN可以捕获和学习模式中的短期依赖关系或周期性。
-这类似于在时间序列分析中使用滑动窗口来捕获短期模式。
(b)参数共享:
-在CNN中,卷积核的权重在输入的所有部分上都是共享的。
-这意味着网络可以在时间序列的任何位置都识别出相同的模式,增加了其泛化能力。
(c)多尺度特征捕获:
-通过使用多个卷积层和池化层,CNN能够在不同的时间尺度上捕获模式。
-这使得它们能够捕获长期和短期的时间序列依赖关系。
(d)堆叠结构:
多层的CNN结构使得网络可以学习时间序列中的复杂和抽象的模式。例如,第一层可能会捕获简单的趋势或周期性,而更深层的网络可能会捕获更复杂的季节性模式或其他非线性关系。
(e)自动特征学习:
-传统的时间序列分析方法通常需要手动选择和构造特征。
-使用CNN,网络可以自动从原始数据中学习和提取相关特征,这通常导致更好的性能和更少的手工工作。
(f)时间序列的结构化特征:
-和图像数据一样,时间序列数据也具有结构性。例如,过去的观察结果通常影响未来的观察结果。
-CNN利用这种结构性,通过卷积操作从数据中提取局部和全局的时间模式。
总之,虽然CNN最初是为图像设计的,但它们在处理序列数据,特别是时间序列数据时,已经显示出了很强的潜力。这是因为它们可以自动从数据中学习重要的特征,捕获多种尺度的模式,并适应时间序列中的短期和长期依赖关系。
(2)单步滚动预测
- import pandas as pd
- import numpy as np
- from sklearn.metrics import mean_absolute_error, mean_squared_error
- from tensorflow.python.keras.models import Sequential
- from tensorflow.python.keras.layers import Dense, Conv1D, Flatten, MaxPooling1D
- from tensorflow.python.keras.optimizers import adam_v2
-
- # 读取数据
- data = pd.read_csv('data.csv')
-
- # 将时间列转换为日期格式
- data['time'] = pd.to_datetime(data['time'], format='%b-%y')
-
- # 创建滞后期特征
- lag_period = 6
- for i in range(lag_period, 0, -1):
- data[f'lag_{i}'] = data['incidence'].shift(lag_period - i + 1)
-
- # 删除包含 NaN 的行
- data = data.dropna().reset_index(drop=True)
-
- # 划分训练集和验证集
- train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
- validation_data = data[(data['time'] >= '2012-01-01') & (data['time'] <= '2012-12-31')]
-
- # 定义特征和目标变量
- X_train = train_data[['lag_1', 'lag_2', 'lag_3', 'lag_4', 'lag_5', 'lag_6']].values
- y_train = train_data['incidence'].values
- X_validation = validation_data[['lag_1', 'lag_2', 'lag_3', 'lag_4', 'lag_5', 'lag_6']].values
- y_validation = validation_data['incidence'].values
-
- # 对于CNN,我们需要将输入数据重塑为3D格式 [samples, timesteps, features]
- X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
- X_validation = X_validation.reshape(X_validation.shape[0], X_validation.shape[1], 1)
-
- # 构建CNN模型
- model = Sequential()
- model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(X_train.shape[1], 1)))
- model.add(MaxPooling1D(pool_size=2))
- model.add(Flatten())
- model.add(Dense(50, activation='relu'))
- model.add(Dense(1))
-
- model.compile(optimizer=adam_v2.Adam(learning_rate=0.001), loss='mse')
-
- # 训练模型
- history = model.fit(X_train, y_train, epochs=200, batch_size=32, validation_data=(X_validation, y_validation), verbose=0)
-
- # 单步滚动预测函数
- def rolling_forecast(model, initial_features, n_forecasts):
- forecasts = []
- current_features = initial_features.copy()
-
- for i in range(n_forecasts):
- # 使用当前的特征进行预测
- forecast = model.predict(current_features.reshape(1, len(current_features), 1)).flatten()[0]
- forecasts.append(forecast)
-
- # 更新特征,用新的预测值替换最旧的特征
- current_features = np.roll(current_features, shift=-1)
- current_features[-1] = forecast
-
- return np.array(forecasts)
-
- # 使用训练集的最后6个数据点作为初始特征
- initial_features = X_train[-1].flatten()
-
- # 使用单步滚动预测方法预测验证集
- y_validation_pred = rolling_forecast(model, initial_features, len(X_validation))
-
- # 计算训练集上的MAE, MAPE, MSE 和 RMSE
- mae_train = mean_absolute_error(y_train, model.predict(X_train).flatten())
- mape_train = np.mean(np.abs((y_train - model.predict(X_train).flatten()) / y_train))
- mse_train = mean_squared_error(y_train, model.predict(X_train).flatten())
- rmse_train = np.sqrt(mse_train)
-
- # 计算验证集上的MAE, MAPE, MSE 和 RMSE
- mae_validation = mean_absolute_error(y_validation, y_validation_pred)
- mape_validation = np.mean(np.abs((y_validation - y_validation_pred) / y_validation))
- mse_validation = mean_squared_error(y_validation, y_validation_pred)
- rmse_validation = np.sqrt(mse_validation)
-
- print("验证集:", mae_validation, mape_validation, mse_validation, rmse_validation)
- print("训练集:", mae_train, mape_train, mse_train, rmse_train)
看结果:
(3)多步滚动预测-vol. 1
- import pandas as pd
- import numpy as np
- from sklearn.metrics import mean_absolute_error, mean_squared_error
- from tensorflow.python.keras.models import Sequential
- from tensorflow.python.keras.layers import Dense, Conv1D, Flatten, MaxPooling1D
- from tensorflow.python.keras.optimizers import adam_v2
-
- # 读取数据
- data = pd.read_csv('data.csv')
- data['time'] = pd.to_datetime(data['time'], format='%b-%y')
-
- n = 6
- m = 2
-
- # 创建滞后期特征
- for i in range(n, 0, -1):
- data[f'lag_{i}'] = data['incidence'].shift(n - i + 1)
-
- data = data.dropna().reset_index(drop=True)
-
- train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
- validation_data = data[(data['time'] >= '2012-01-01') & (data['time'] <= '2012-12-31')]
-
- # 准备训练数据
- X_train = []
- y_train = []
-
- for i in range(len(train_data) - n - m + 1):
- X_train.append(train_data.iloc[i+n-1][[f'lag_{j}' for j in range(1, n+1)]].values)
- y_train.append(train_data.iloc[i+n:i+n+m]['incidence'].values)
-
- X_train = np.array(X_train)
- y_train = np.array(y_train)
- X_train = X_train.astype(np.float32)
- y_train = y_train.astype(np.float32)
-
-
- # 为CNN准备数据
- X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
-
- # 构建CNN模型
- model = Sequential()
- model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(X_train.shape[1], 1)))
- model.add(MaxPooling1D(pool_size=2))
- model.add(Flatten())
- model.add(Dense(50, activation='relu'))
- model.add(Dense(m))
-
- model.compile(optimizer=adam_v2.Adam(learning_rate=0.001), loss='mse')
-
- # 训练模型
- model.fit(X_train, y_train, epochs=200, batch_size=32, verbose=0)
-
- def cnn_rolling_forecast(data, model, n, m):
- y_pred = []
-
- for i in range(len(data) - n):
- input_data = data.iloc[i+n-1][[f'lag_{j}' for j in range(1, n+1)]].values.astype(np.float32).reshape(1, n, 1)
- pred = model.predict(input_data)
- y_pred.extend(pred[0])
-
- # Handle overlapping predictions by averaging
- for i in range(1, m):
- for j in range(len(y_pred) - i):
- y_pred[j+i] = (y_pred[j+i] + y_pred[j]) / 2
-
- return np.array(y_pred)
-
- # Predict for train_data and validation_data
- y_train_pred_cnn = cnn_rolling_forecast(train_data, model, n, m)[:len(y_train)]
- y_validation_pred_cnn = cnn_rolling_forecast(validation_data, model, n, m)[:len(validation_data) - n]
-
- # Calculate performance metrics for train_data
- mae_train = mean_absolute_error(train_data['incidence'].values[n:len(y_train_pred_cnn)+n], y_train_pred_cnn)
- mape_train = np.mean(np.abs((train_data['incidence'].values[n:len(y_train_pred_cnn)+n] - y_train_pred_cnn) / train_data['incidence'].values[n:len(y_train_pred_cnn)+n]))
- mse_train = mean_squared_error(train_data['incidence'].values[n:len(y_train_pred_cnn)+n], y_train_pred_cnn)
- rmse_train = np.sqrt(mse_train)
-
- # Calculate performance metrics for validation_data
- mae_validation = mean_absolute_error(validation_data['incidence'].values[n:len(y_validation_pred_cnn)+n], y_validation_pred_cnn)
- mape_validation = np.mean(np.abs((validation_data['incidence'].values[n:len(y_validation_pred_cnn)+n] - y_validation_pred_cnn) / validation_data['incidence'].values[n:len(y_validation_pred_cnn)+n]))
- mse_validation = mean_squared_error(validation_data['incidence'].values[n:len(y_validation_pred_cnn)+n], y_validation_pred_cnn)
- rmse_validation = np.sqrt(mse_validation)
-
-
- print("训练集:", mae_train, mape_train, mse_train, rmse_train)
- print("验证集:", mae_validation, mape_validation, mse_validation, rmse_validation)
结果:
(4)多步滚动预测-vol. 2
- import pandas as pd
- import numpy as np
- from sklearn.model_selection import train_test_split
- from sklearn.metrics import mean_absolute_error, mean_squared_error
- from tensorflow.python.keras.models import Sequential
- from tensorflow.python.keras.layers import Dense, Conv1D, Flatten, MaxPooling1D
- from tensorflow.python.keras.optimizers import adam_v2
-
- # Loading and preprocessing the data
- data = pd.read_csv('data.csv')
- data['time'] = pd.to_datetime(data['time'], format='%b-%y')
-
- n = 6 # 使用前6个数据点
- m = 2 # 预测接下来的2个数据点
-
- # 创建滞后期特征
- for i in range(n, 0, -1):
- data[f'lag_{i}'] = data['incidence'].shift(n - i + 1)
-
- data = data.dropna().reset_index(drop=True)
-
- train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
- validation_data = data[(data['time'] >= '2012-01-01') & (data['time'] <= '2012-12-31')]
-
- # 只对X_train、y_train、X_validation取奇数行
- X_train = train_data[[f'lag_{i}' for i in range(1, n+1)]].iloc[::2].reset_index(drop=True).values
- X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1) # Reshape for CNN
-
- # 创建m个目标变量
- y_train_list = [train_data['incidence'].shift(-i) for i in range(m)]
- y_train = pd.concat(y_train_list, axis=1)
- y_train.columns = [f'target_{i+1}' for i in range(m)]
- y_train = y_train.iloc[::2].reset_index(drop=True).dropna().values[:, 0] # Only take the first column for simplicity
-
- X_validation = validation_data[[f'lag_{i}' for i in range(1, n+1)]].iloc[::2].reset_index(drop=True).values
- X_validation = X_validation.reshape(X_validation.shape[0], X_validation.shape[1], 1) # Reshape for CNN
-
- y_validation = validation_data['incidence'].values
-
- # Building the CNN model
- model = Sequential()
- model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(X_train.shape[1], 1)))
- model.add(MaxPooling1D(pool_size=2))
- model.add(Flatten())
- model.add(Dense(50, activation='relu'))
- model.add(Dense(1))
-
- optimizer = adam_v2.Adam(learning_rate=0.001)
- model.compile(optimizer=optimizer, loss='mse')
-
- # Train the model
- model.fit(X_train, y_train, epochs=200, batch_size=32, verbose=0)
-
- # Predict on validation set
- y_validation_pred = model.predict(X_validation).flatten()
-
- # Compute metrics for validation set
- mae_validation = mean_absolute_error(y_validation[:len(y_validation_pred)], y_validation_pred)
- mape_validation = np.mean(np.abs((y_validation[:len(y_validation_pred)] - y_validation_pred) / y_validation[:len(y_validation_pred)]))
- mse_validation = mean_squared_error(y_validation[:len(y_validation_pred)], y_validation_pred)
- rmse_validation = np.sqrt(mse_validation)
-
- # Predict on training set
- y_train_pred = model.predict(X_train).flatten()
-
- # Compute metrics for training set
- mae_train = mean_absolute_error(y_train, y_train_pred)
- mape_train = np.mean(np.abs((y_train - y_train_pred) / y_train))
- mse_train = mean_squared_error(y_train, y_train_pred)
- rmse_train = np.sqrt(mse_train)
-
- print("验证集:", mae_validation, mape_validation, mse_validation, rmse_validation)
- print("训练集:", mae_train, mape_train, mse_train, rmse_train)
结果:
(5)多步滚动预测-vol. 3
- import pandas as pd
- import numpy as np
- from sklearn.metrics import mean_absolute_error, mean_squared_error
- from tensorflow.python.keras.models import Sequential
- from tensorflow.python.keras.layers import Dense, Conv1D, Flatten, MaxPooling1D
- from tensorflow.python.keras.optimizers import adam_v2
-
- # 数据读取和预处理
- data = pd.read_csv('data.csv')
- data_y = pd.read_csv('data.csv')
- data['time'] = pd.to_datetime(data['time'], format='%b-%y')
- data_y['time'] = pd.to_datetime(data_y['time'], format='%b-%y')
-
- n = 6
-
- for i in range(n, 0, -1):
- data[f'lag_{i}'] = data['incidence'].shift(n - i + 1)
-
- data = data.dropna().reset_index(drop=True)
- train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
- X_train = train_data[[f'lag_{i}' for i in range(1, n+1)]]
- m = 3
-
- X_train_list = []
- y_train_list = []
-
- for i in range(m):
- X_temp = X_train
- y_temp = data_y['incidence'].iloc[n + i:len(data_y) - m + 1 + i]
-
- X_train_list.append(X_temp)
- y_train_list.append(y_temp)
-
- for i in range(m):
- X_train_list[i] = X_train_list[i].iloc[:-(m-1)].values
- X_train_list[i] = X_train_list[i].reshape(X_train_list[i].shape[0], X_train_list[i].shape[1], 1) # Reshape for CNN
- y_train_list[i] = y_train_list[i].iloc[:len(X_train_list[i])].values
-
- # 模型训练
- models = []
- for i in range(m):
- # Build CNN model
- model = Sequential()
- model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(X_train_list[i].shape[1], 1)))
- model.add(MaxPooling1D(pool_size=2))
- model.add(Flatten())
- model.add(Dense(50, activation='relu'))
- model.add(Dense(1))
-
- optimizer = adam_v2.Adam(learning_rate=0.001)
- model.compile(optimizer=optimizer, loss='mse')
- model.fit(X_train_list[i], y_train_list[i], epochs=200, batch_size=32, verbose=0)
- models.append(model)
-
- validation_start_time = train_data['time'].iloc[-1] + pd.DateOffset(months=1)
- validation_data = data[data['time'] >= validation_start_time]
- X_validation = validation_data[[f'lag_{i}' for i in range(1, n+1)]].values
- X_validation = X_validation.reshape(X_validation.shape[0], X_validation.shape[1], 1) # Reshape for CNN
-
- y_validation_pred_list = [model.predict(X_validation) for model in models]
- y_train_pred_list = [model.predict(X_train_list[i]) for i, model in enumerate(models)]
-
- def concatenate_predictions(pred_list):
- concatenated = []
- for j in range(len(pred_list[0])):
- for i in range(m):
- concatenated.append(pred_list[i][j])
- return concatenated
-
- y_validation_pred = np.array(concatenate_predictions(y_validation_pred_list))[:len(validation_data['incidence'])]
- y_train_pred = np.array(concatenate_predictions(y_train_pred_list))[:len(train_data['incidence']) - m + 1]
- y_validation_pred = y_validation_pred.flatten()
- y_train_pred = y_train_pred.flatten()
-
- mae_validation = mean_absolute_error(validation_data['incidence'], y_validation_pred)
- mape_validation = np.mean(np.abs((validation_data['incidence'] - y_validation_pred) / validation_data['incidence']))
- mse_validation = mean_squared_error(validation_data['incidence'], y_validation_pred)
- rmse_validation = np.sqrt(mse_validation)
-
- mae_train = mean_absolute_error(train_data['incidence'][:-(m-1)], y_train_pred)
- mape_train = np.mean(np.abs((train_data['incidence'][:-(m-1)] - y_train_pred) / train_data['incidence'][:-(m-1)]))
- mse_train = mean_squared_error(train_data['incidence'][:-(m-1)], y_train_pred)
- rmse_train = np.sqrt(mse_train)
-
- print("验证集:", mae_validation, mape_validation, mse_validation, rmse_validation)
- print("训练集:", mae_train, mape_train, mse_train, rmse_train)
结果:
三、写在后面
本例中,我们只搭建了一个简单的CNN网络。具体实践中,大家可以换成其他的CNN网络结构,甚至是之前介绍的各种预训练模型,VGG19和各种Net系列,可能有惊喜或者惊吓哦。
四、数据
链接:https://pan.baidu.com/s/1EFaWfHoG14h15KCEhn1STg?pwd=q41n
提取码:q41n