• 第85步 时间序列建模实战:CNN回归建模


    基于WIN10的64位系统演示

    一、写在前面

    这一期,我们介绍CNN回归。

    同样,这里使用这个数据:

    《PLoS One》2015年一篇题目为《Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China》文章的公开数据做演示。数据为江苏省2004年1月至2012年12月肾综合症出血热月发病率。运用2004年1月至2011年12月的数据预测2012年12个月的发病率数据。

    二、CNN回归

    (1)原理

    卷积神经网络(CNN)最初是为图像识别和处理而设计的,但它们已经被证明对于各种类型的序列数据,包括时间序列,也是有效的。以下是一些关于CNN在时间序列预测中应用的原理:

    (a)局部感受野:

    -CNN的关键特点是它的局部感受野,这意味着每个卷积核只查看输入数据的一个小部分。

    -对于时间序列,这意味着CNN可以捕获和学习模式中的短期依赖关系或周期性。

    -这类似于在时间序列分析中使用滑动窗口来捕获短期模式。

    (b)参数共享:

    -在CNN中,卷积核的权重在输入的所有部分上都是共享的。

    -这意味着网络可以在时间序列的任何位置都识别出相同的模式,增加了其泛化能力。

    (c)多尺度特征捕获:

    -通过使用多个卷积层和池化层,CNN能够在不同的时间尺度上捕获模式。

    -这使得它们能够捕获长期和短期的时间序列依赖关系。

    (d)堆叠结构:

    多层的CNN结构使得网络可以学习时间序列中的复杂和抽象的模式。例如,第一层可能会捕获简单的趋势或周期性,而更深层的网络可能会捕获更复杂的季节性模式或其他非线性关系。

    (e)自动特征学习:

    -传统的时间序列分析方法通常需要手动选择和构造特征。

    -使用CNN,网络可以自动从原始数据中学习和提取相关特征,这通常导致更好的性能和更少的手工工作。

    (f)时间序列的结构化特征:

    -和图像数据一样,时间序列数据也具有结构性。例如,过去的观察结果通常影响未来的观察结果。

    -CNN利用这种结构性,通过卷积操作从数据中提取局部和全局的时间模式。

    总之,虽然CNN最初是为图像设计的,但它们在处理序列数据,特别是时间序列数据时,已经显示出了很强的潜力。这是因为它们可以自动从数据中学习重要的特征,捕获多种尺度的模式,并适应时间序列中的短期和长期依赖关系。

    (2)单步滚动预测

    1. import pandas as pd
    2. import numpy as np
    3. from sklearn.metrics import mean_absolute_error, mean_squared_error
    4. from tensorflow.python.keras.models import Sequential
    5. from tensorflow.python.keras.layers import Dense, Conv1D, Flatten, MaxPooling1D
    6. from tensorflow.python.keras.optimizers import adam_v2
    7. # 读取数据
    8. data = pd.read_csv('data.csv')
    9. # 将时间列转换为日期格式
    10. data['time'] = pd.to_datetime(data['time'], format='%b-%y')
    11. # 创建滞后期特征
    12. lag_period = 6
    13. for i in range(lag_period, 0, -1):
    14. data[f'lag_{i}'] = data['incidence'].shift(lag_period - i + 1)
    15. # 删除包含 NaN 的行
    16. data = data.dropna().reset_index(drop=True)
    17. # 划分训练集和验证集
    18. train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
    19. validation_data = data[(data['time'] >= '2012-01-01') & (data['time'] <= '2012-12-31')]
    20. # 定义特征和目标变量
    21. X_train = train_data[['lag_1', 'lag_2', 'lag_3', 'lag_4', 'lag_5', 'lag_6']].values
    22. y_train = train_data['incidence'].values
    23. X_validation = validation_data[['lag_1', 'lag_2', 'lag_3', 'lag_4', 'lag_5', 'lag_6']].values
    24. y_validation = validation_data['incidence'].values
    25. # 对于CNN,我们需要将输入数据重塑为3D格式 [samples, timesteps, features]
    26. X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
    27. X_validation = X_validation.reshape(X_validation.shape[0], X_validation.shape[1], 1)
    28. # 构建CNN模型
    29. model = Sequential()
    30. model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(X_train.shape[1], 1)))
    31. model.add(MaxPooling1D(pool_size=2))
    32. model.add(Flatten())
    33. model.add(Dense(50, activation='relu'))
    34. model.add(Dense(1))
    35. model.compile(optimizer=adam_v2.Adam(learning_rate=0.001), loss='mse')
    36. # 训练模型
    37. history = model.fit(X_train, y_train, epochs=200, batch_size=32, validation_data=(X_validation, y_validation), verbose=0)
    38. # 单步滚动预测函数
    39. def rolling_forecast(model, initial_features, n_forecasts):
    40. forecasts = []
    41. current_features = initial_features.copy()
    42. for i in range(n_forecasts):
    43. # 使用当前的特征进行预测
    44. forecast = model.predict(current_features.reshape(1, len(current_features), 1)).flatten()[0]
    45. forecasts.append(forecast)
    46. # 更新特征,用新的预测值替换最旧的特征
    47. current_features = np.roll(current_features, shift=-1)
    48. current_features[-1] = forecast
    49. return np.array(forecasts)
    50. # 使用训练集的最后6个数据点作为初始特征
    51. initial_features = X_train[-1].flatten()
    52. # 使用单步滚动预测方法预测验证集
    53. y_validation_pred = rolling_forecast(model, initial_features, len(X_validation))
    54. # 计算训练集上的MAE, MAPE, MSE 和 RMSE
    55. mae_train = mean_absolute_error(y_train, model.predict(X_train).flatten())
    56. mape_train = np.mean(np.abs((y_train - model.predict(X_train).flatten()) / y_train))
    57. mse_train = mean_squared_error(y_train, model.predict(X_train).flatten())
    58. rmse_train = np.sqrt(mse_train)
    59. # 计算验证集上的MAE, MAPE, MSE 和 RMSE
    60. mae_validation = mean_absolute_error(y_validation, y_validation_pred)
    61. mape_validation = np.mean(np.abs((y_validation - y_validation_pred) / y_validation))
    62. mse_validation = mean_squared_error(y_validation, y_validation_pred)
    63. rmse_validation = np.sqrt(mse_validation)
    64. print("验证集:", mae_validation, mape_validation, mse_validation, rmse_validation)
    65. print("训练集:", mae_train, mape_train, mse_train, rmse_train)

    看结果:

    (3)多步滚动预测-vol. 1

    1. import pandas as pd
    2. import numpy as np
    3. from sklearn.metrics import mean_absolute_error, mean_squared_error
    4. from tensorflow.python.keras.models import Sequential
    5. from tensorflow.python.keras.layers import Dense, Conv1D, Flatten, MaxPooling1D
    6. from tensorflow.python.keras.optimizers import adam_v2
    7. # 读取数据
    8. data = pd.read_csv('data.csv')
    9. data['time'] = pd.to_datetime(data['time'], format='%b-%y')
    10. n = 6
    11. m = 2
    12. # 创建滞后期特征
    13. for i in range(n, 0, -1):
    14. data[f'lag_{i}'] = data['incidence'].shift(n - i + 1)
    15. data = data.dropna().reset_index(drop=True)
    16. train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
    17. validation_data = data[(data['time'] >= '2012-01-01') & (data['time'] <= '2012-12-31')]
    18. # 准备训练数据
    19. X_train = []
    20. y_train = []
    21. for i in range(len(train_data) - n - m + 1):
    22. X_train.append(train_data.iloc[i+n-1][[f'lag_{j}' for j in range(1, n+1)]].values)
    23. y_train.append(train_data.iloc[i+n:i+n+m]['incidence'].values)
    24. X_train = np.array(X_train)
    25. y_train = np.array(y_train)
    26. X_train = X_train.astype(np.float32)
    27. y_train = y_train.astype(np.float32)
    28. # 为CNN准备数据
    29. X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
    30. # 构建CNN模型
    31. model = Sequential()
    32. model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(X_train.shape[1], 1)))
    33. model.add(MaxPooling1D(pool_size=2))
    34. model.add(Flatten())
    35. model.add(Dense(50, activation='relu'))
    36. model.add(Dense(m))
    37. model.compile(optimizer=adam_v2.Adam(learning_rate=0.001), loss='mse')
    38. # 训练模型
    39. model.fit(X_train, y_train, epochs=200, batch_size=32, verbose=0)
    40. def cnn_rolling_forecast(data, model, n, m):
    41. y_pred = []
    42. for i in range(len(data) - n):
    43. input_data = data.iloc[i+n-1][[f'lag_{j}' for j in range(1, n+1)]].values.astype(np.float32).reshape(1, n, 1)
    44. pred = model.predict(input_data)
    45. y_pred.extend(pred[0])
    46. # Handle overlapping predictions by averaging
    47. for i in range(1, m):
    48. for j in range(len(y_pred) - i):
    49. y_pred[j+i] = (y_pred[j+i] + y_pred[j]) / 2
    50. return np.array(y_pred)
    51. # Predict for train_data and validation_data
    52. y_train_pred_cnn = cnn_rolling_forecast(train_data, model, n, m)[:len(y_train)]
    53. y_validation_pred_cnn = cnn_rolling_forecast(validation_data, model, n, m)[:len(validation_data) - n]
    54. # Calculate performance metrics for train_data
    55. mae_train = mean_absolute_error(train_data['incidence'].values[n:len(y_train_pred_cnn)+n], y_train_pred_cnn)
    56. mape_train = np.mean(np.abs((train_data['incidence'].values[n:len(y_train_pred_cnn)+n] - y_train_pred_cnn) / train_data['incidence'].values[n:len(y_train_pred_cnn)+n]))
    57. mse_train = mean_squared_error(train_data['incidence'].values[n:len(y_train_pred_cnn)+n], y_train_pred_cnn)
    58. rmse_train = np.sqrt(mse_train)
    59. # Calculate performance metrics for validation_data
    60. mae_validation = mean_absolute_error(validation_data['incidence'].values[n:len(y_validation_pred_cnn)+n], y_validation_pred_cnn)
    61. mape_validation = np.mean(np.abs((validation_data['incidence'].values[n:len(y_validation_pred_cnn)+n] - y_validation_pred_cnn) / validation_data['incidence'].values[n:len(y_validation_pred_cnn)+n]))
    62. mse_validation = mean_squared_error(validation_data['incidence'].values[n:len(y_validation_pred_cnn)+n], y_validation_pred_cnn)
    63. rmse_validation = np.sqrt(mse_validation)
    64. print("训练集:", mae_train, mape_train, mse_train, rmse_train)
    65. print("验证集:", mae_validation, mape_validation, mse_validation, rmse_validation)

    结果:

    (4)多步滚动预测-vol. 2

    1. import pandas as pd
    2. import numpy as np
    3. from sklearn.model_selection import train_test_split
    4. from sklearn.metrics import mean_absolute_error, mean_squared_error
    5. from tensorflow.python.keras.models import Sequential
    6. from tensorflow.python.keras.layers import Dense, Conv1D, Flatten, MaxPooling1D
    7. from tensorflow.python.keras.optimizers import adam_v2
    8. # Loading and preprocessing the data
    9. data = pd.read_csv('data.csv')
    10. data['time'] = pd.to_datetime(data['time'], format='%b-%y')
    11. n = 6 # 使用前6个数据点
    12. m = 2 # 预测接下来的2个数据点
    13. # 创建滞后期特征
    14. for i in range(n, 0, -1):
    15. data[f'lag_{i}'] = data['incidence'].shift(n - i + 1)
    16. data = data.dropna().reset_index(drop=True)
    17. train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
    18. validation_data = data[(data['time'] >= '2012-01-01') & (data['time'] <= '2012-12-31')]
    19. # 只对X_train、y_train、X_validation取奇数行
    20. X_train = train_data[[f'lag_{i}' for i in range(1, n+1)]].iloc[::2].reset_index(drop=True).values
    21. X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1) # Reshape for CNN
    22. # 创建m个目标变量
    23. y_train_list = [train_data['incidence'].shift(-i) for i in range(m)]
    24. y_train = pd.concat(y_train_list, axis=1)
    25. y_train.columns = [f'target_{i+1}' for i in range(m)]
    26. y_train = y_train.iloc[::2].reset_index(drop=True).dropna().values[:, 0] # Only take the first column for simplicity
    27. X_validation = validation_data[[f'lag_{i}' for i in range(1, n+1)]].iloc[::2].reset_index(drop=True).values
    28. X_validation = X_validation.reshape(X_validation.shape[0], X_validation.shape[1], 1) # Reshape for CNN
    29. y_validation = validation_data['incidence'].values
    30. # Building the CNN model
    31. model = Sequential()
    32. model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(X_train.shape[1], 1)))
    33. model.add(MaxPooling1D(pool_size=2))
    34. model.add(Flatten())
    35. model.add(Dense(50, activation='relu'))
    36. model.add(Dense(1))
    37. optimizer = adam_v2.Adam(learning_rate=0.001)
    38. model.compile(optimizer=optimizer, loss='mse')
    39. # Train the model
    40. model.fit(X_train, y_train, epochs=200, batch_size=32, verbose=0)
    41. # Predict on validation set
    42. y_validation_pred = model.predict(X_validation).flatten()
    43. # Compute metrics for validation set
    44. mae_validation = mean_absolute_error(y_validation[:len(y_validation_pred)], y_validation_pred)
    45. mape_validation = np.mean(np.abs((y_validation[:len(y_validation_pred)] - y_validation_pred) / y_validation[:len(y_validation_pred)]))
    46. mse_validation = mean_squared_error(y_validation[:len(y_validation_pred)], y_validation_pred)
    47. rmse_validation = np.sqrt(mse_validation)
    48. # Predict on training set
    49. y_train_pred = model.predict(X_train).flatten()
    50. # Compute metrics for training set
    51. mae_train = mean_absolute_error(y_train, y_train_pred)
    52. mape_train = np.mean(np.abs((y_train - y_train_pred) / y_train))
    53. mse_train = mean_squared_error(y_train, y_train_pred)
    54. rmse_train = np.sqrt(mse_train)
    55. print("验证集:", mae_validation, mape_validation, mse_validation, rmse_validation)
    56. print("训练集:", mae_train, mape_train, mse_train, rmse_train)

    结果:

    (5)多步滚动预测-vol. 3

    1. import pandas as pd
    2. import numpy as np
    3. from sklearn.metrics import mean_absolute_error, mean_squared_error
    4. from tensorflow.python.keras.models import Sequential
    5. from tensorflow.python.keras.layers import Dense, Conv1D, Flatten, MaxPooling1D
    6. from tensorflow.python.keras.optimizers import adam_v2
    7. # 数据读取和预处理
    8. data = pd.read_csv('data.csv')
    9. data_y = pd.read_csv('data.csv')
    10. data['time'] = pd.to_datetime(data['time'], format='%b-%y')
    11. data_y['time'] = pd.to_datetime(data_y['time'], format='%b-%y')
    12. n = 6
    13. for i in range(n, 0, -1):
    14. data[f'lag_{i}'] = data['incidence'].shift(n - i + 1)
    15. data = data.dropna().reset_index(drop=True)
    16. train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
    17. X_train = train_data[[f'lag_{i}' for i in range(1, n+1)]]
    18. m = 3
    19. X_train_list = []
    20. y_train_list = []
    21. for i in range(m):
    22. X_temp = X_train
    23. y_temp = data_y['incidence'].iloc[n + i:len(data_y) - m + 1 + i]
    24. X_train_list.append(X_temp)
    25. y_train_list.append(y_temp)
    26. for i in range(m):
    27. X_train_list[i] = X_train_list[i].iloc[:-(m-1)].values
    28. X_train_list[i] = X_train_list[i].reshape(X_train_list[i].shape[0], X_train_list[i].shape[1], 1) # Reshape for CNN
    29. y_train_list[i] = y_train_list[i].iloc[:len(X_train_list[i])].values
    30. # 模型训练
    31. models = []
    32. for i in range(m):
    33. # Build CNN model
    34. model = Sequential()
    35. model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(X_train_list[i].shape[1], 1)))
    36. model.add(MaxPooling1D(pool_size=2))
    37. model.add(Flatten())
    38. model.add(Dense(50, activation='relu'))
    39. model.add(Dense(1))
    40. optimizer = adam_v2.Adam(learning_rate=0.001)
    41. model.compile(optimizer=optimizer, loss='mse')
    42. model.fit(X_train_list[i], y_train_list[i], epochs=200, batch_size=32, verbose=0)
    43. models.append(model)
    44. validation_start_time = train_data['time'].iloc[-1] + pd.DateOffset(months=1)
    45. validation_data = data[data['time'] >= validation_start_time]
    46. X_validation = validation_data[[f'lag_{i}' for i in range(1, n+1)]].values
    47. X_validation = X_validation.reshape(X_validation.shape[0], X_validation.shape[1], 1) # Reshape for CNN
    48. y_validation_pred_list = [model.predict(X_validation) for model in models]
    49. y_train_pred_list = [model.predict(X_train_list[i]) for i, model in enumerate(models)]
    50. def concatenate_predictions(pred_list):
    51. concatenated = []
    52. for j in range(len(pred_list[0])):
    53. for i in range(m):
    54. concatenated.append(pred_list[i][j])
    55. return concatenated
    56. y_validation_pred = np.array(concatenate_predictions(y_validation_pred_list))[:len(validation_data['incidence'])]
    57. y_train_pred = np.array(concatenate_predictions(y_train_pred_list))[:len(train_data['incidence']) - m + 1]
    58. y_validation_pred = y_validation_pred.flatten()
    59. y_train_pred = y_train_pred.flatten()
    60. mae_validation = mean_absolute_error(validation_data['incidence'], y_validation_pred)
    61. mape_validation = np.mean(np.abs((validation_data['incidence'] - y_validation_pred) / validation_data['incidence']))
    62. mse_validation = mean_squared_error(validation_data['incidence'], y_validation_pred)
    63. rmse_validation = np.sqrt(mse_validation)
    64. mae_train = mean_absolute_error(train_data['incidence'][:-(m-1)], y_train_pred)
    65. mape_train = np.mean(np.abs((train_data['incidence'][:-(m-1)] - y_train_pred) / train_data['incidence'][:-(m-1)]))
    66. mse_train = mean_squared_error(train_data['incidence'][:-(m-1)], y_train_pred)
    67. rmse_train = np.sqrt(mse_train)
    68. print("验证集:", mae_validation, mape_validation, mse_validation, rmse_validation)
    69. print("训练集:", mae_train, mape_train, mse_train, rmse_train)

    结果:

    三、写在后面

    本例中,我们只搭建了一个简单的CNN网络。具体实践中,大家可以换成其他的CNN网络结构,甚至是之前介绍的各种预训练模型,VGG19和各种Net系列,可能有惊喜或者惊吓哦。

    四、数据

    链接:https://pan.baidu.com/s/1EFaWfHoG14h15KCEhn1STg?pwd=q41n

    提取码:q41n

  • 相关阅读:
    docker安装mysql exporter并使用grafana+prometheus监控mysql
    【内存管理】从程序进入内存开始说起
    python——运行方式
    【STM32开发笔记】搭建VSCode+PyOCD的STM32开发环境
    Multi Scale Supervised 3D U-Net for Kidney and Tumor Segmentation
    C++ bool类型变量赋值true,输出结果却是false?是因为cin输入的true会被当成字符串,所以bool变量原值不变吗?
    05_Docker-Compose
    STM32 定时器配置不当导致误差(精度)偏大的问题发现与解决
    net-java-php-python-会议管理系统计算机毕业设计程序
    Redis常用命令
  • 原文地址:https://blog.csdn.net/qq_30452897/article/details/133636168