线性回归是一种线性模型,例如,假设输入变量"(x) “与单一输出变量”(y) “之间存在线性关系的模型。更具体地说,输出变量”(y) “可以通过输入变量”(x) "的线性组合计算得出。单变量线性回归是一种线性回归,只有1个输入参数和1个输出标签。这里建立一个模型,根据 "人均 GDP "参数预测各国的 “幸福指数”。
导包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sys
sys.path.append('../..')
# Import custom linear regression implementation.
from homemade.linear_regression import LinearRegression
关于自定义的线性回归py文件为:
# Import dependencies.
import numpy as np
from ..utils.features import prepare_for_training
class LinearRegression:
# pylint: disable=too-many-instance-attributes
"""Linear Regression Class"""
def __init__(self, data, labels, polynomial_degree=0, sinusoid_degree=0, normalize_data=True):
# pylint: disable=too-many-arguments
"""Linear regression constructor.
:param data: training set.
:param labels: training set outputs (correct values).
:param polynomial_degree: degree of additional polynomial features.
:param sinusoid_degree: multipliers for sinusoidal features.
:param normalize_data: flag that indicates that features should be normalized.表示应将特征标准化。
"""
# 标准化: 数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值。 常用的标准化有:Min-Max scaling, Z score
# 中心化:即变量减去它的均值,对数据进行平移。
# Normalize features and add ones column.
(
data_processed,
features_mean,
features_deviation
) = prepare_for_training(data, polynomial_degree, sinusoid_degree, normalize_data)
self.data = data_processed
self.labels = labels
self.features_mean = features_mean
self.features_deviation = features_deviation
self.polynomial_degree = polynomial_degree
self.sinusoid_degree = sinusoid_degree
self.normalize_data = normalize_data
# Initialize model parameters.
num_features = self.data.shape[1]
self.theta = np.zeros((num_features, 1))
def train(self, alpha, lambda_param=0, num_iterations=500):
"""Trains linear regression.
:param alpha: learning rate (the size of the step for gradient descent)
:param lambda_param: regularization parameter
:param num_iterations: number of gradient descent iterations.
"""
# Run gradient descent.
cost_history = self.gradient_descent(alpha, lambda_param, num_iterations)
return self.theta, cost_history
def gradient_descent(self, alpha, lambda_param, num_iterations):
"""梯度下降。它能计算出每个 theta 参数应采取的步骤(deltas)以最小化成本函数。
:param alpha: learning rate (the size of the step for gradient descent)
:param lambda_param: regularization parameter
:param num_iterations: number of gradient descent iterations.
"""
# Initialize J_history with zeros.
cost_history = []
for _ in range(num_iterations):
# 在参数向量 theta 上执行一个梯度步骤。
self.gradient_step(alpha, lambda_param)
# 在每次迭代中保存成本 J。
cost_history.append(self.cost_function(self.data, self.labels, lambda_param))
return cost_history
def gradient_step(self, alpha, lambda_param):
"""单步梯度下降。 函数对 theta 参数执行一步梯度下降。
:param alpha: learning rate (the size of the step for gradient descent)
:param lambda_param: regularization parameter
"""
# Calculate the number of training examples.
num_examples = self.data.shape[0]
# 对所有 m 个例子的假设预测。
predictions = LinearRegression.hypothesis(self.data, self.theta)
# 所有 m 个示例的预测值与实际值之间的差值。
delta = predictions - self.labels
# 计算正则化参数
reg_param = 1 - alpha * lambda_param / num_examples
# 创建快捷方式。
theta = self.theta
# 梯度下降的矢量化版本。
theta = theta * reg_param - alpha * (1 / num_examples) * (delta.T @ self.data).T
# 我们不应该对参数 theta_zero 进行正则化处理。
theta[0] = theta[0] - alpha * (1 / num_examples) * (self.data[:, 0].T @ delta).T
self.theta = theta
def get_cost(self, data, labels, lambda_param):
"""获取特定数据集的成本值。
:param data: the set of training or test data.
:param labels: training set outputs (correct values).
:param lambda_param: regularization parameter
"""
data_processed = prepare_for_training(
data,
self.polynomial_degree,
self.sinusoid_degree,
self.normalize_data,
)[0]
return self.cost_function(data_processed, labels, lambda_param)
def cost_function(self, data, labels, lambda_param):
"""成本函数。它显示了我们的模型在当前模型参数基础上的精确度。
:param data: the set of training or test data.
:param labels: training set outputs (correct values).
:param lambda_param: regularization parameter
"""
# Calculate the number of training examples and features.
num_examples = data.shape[0]
# Get the difference between predictions and correct output values.
delta = LinearRegression.hypothesis(data, self.theta) - labels
# Calculate regularization parameter.
# Remember that we should not regularize the parameter theta_zero.
theta_cut = self.theta[1:, 0]
reg_param = lambda_param * (theta_cut.T @ theta_cut)
# 计算当前的预测成本。
cost = (1 / 2 * num_examples) * (delta.T @ delta + reg_param)
# Let's extract cost value from the one and only cost numpy matrix cell.
return cost[0][0]
def predict(self, data):
"""Predict the output for data_set input based on trained theta values
:param data: training set of features.
"""
# Normalize features and add ones column.
data_processed = prepare_for_training(
data,
self.polynomial_degree,
self.sinusoid_degree,
self.normalize_data,
)[0]
# Do predictions using model hypothesis.
predictions = LinearRegression.hypothesis(data_processed, self.theta)
return predictions
@staticmethod
def hypothesis(data, theta):### 非常不理解,能告诉我嘛
"""假设函数。它根据输入值 X 和模型参数预测输出值 y。
:param data: data set for what the predictions will be calculated.
:param theta: model params.
:return: predictions made by model based on provided theta.
"""
predictions = data @ theta
return predictions
在聚类过程中,标准化显得尤为重要。这是因为聚类操作依赖于对类间距离和类内聚类之间的衡量。如果一个变量的衡量标准高于其他变量,那么我们使用的任何衡量标准都将受到该变量的过度影响。
在PCA降维操作之前。在主成分PCA分析之前,对变量进行标准化至关重要。 这是因为PCA给那些方差较高的变量比那些方差非常小的变量赋予更多的权重。而 标准化原始数据会产生相同的方差,因此高权重不会分配给具有较高方差的变量。
KNN操作,原因类似于kmeans聚类。由于KNN需要用欧式距离去度量。标准化会让变量之间起着相同的作用。
在SVM中,使用所有跟距离计算相关的的kernel都需要对数据进行标准化。
在选择岭回归和Lasso时候,标准化是必须的。原因是正则化是有偏估计,会对权重进行惩罚。在量纲不同的情况,正则化会带来更大的偏差。
prepare_for_training方法
import numpy as np
from .normalize import normalize
from .generate_sinusoids import generate_sinusoids
from .generate_polynomials import generate_polynomials
def prepare_for_training(data, polynomial_degree=0, sinusoid_degree=0, normalize_data=True):
"""Prepares data set for training on prediction"""
# Calculate the number of examples.
num_examples = data.shape[0]
# Prevent original data from being modified.深拷贝(Deep Copy)和浅拷贝(Shallow Copy)是在进行对象拷贝时常用的两种方式,它们之间的主要区别在于是否复制了对象内部的数据。
# 浅拷贝只是简单地将原对象的引用赋值给新对象,新旧对象共享同一块内存空间。当其中一个对象修改了这块内存中的数据时,另一个对象也会受到影响。 view操作,如numpy的slice,只会copy父对象,不会copy底层的数据,共用原始引用指向的对象数据。如果在view上修改数据,会直接反馈到原始对象。
# 深拷贝则是创建一个全新的对象,并且递归地复制原对象及其所有子对象的内容。新对象与原对象完全独立,对任何一方的修改都不会影响另一方。
data_processed = np.copy(data) #deep copy
# Normalize data set.
features_mean = 0
features_deviation = 0
data_normalized = data_processed
if normalize_data:
(
data_normalized,
features_mean,
features_deviation
) = normalize(data_processed)
# 将处理过的数据替换为归一化处理过的数据。在添加多项式和正弦曲线时,我们需要下面的归一化数据。
data_processed = data_normalized
# 在数据集中添加正弦特征。
if sinusoid_degree > 0:
sinusoids = generate_sinusoids(data_normalized, sinusoid_degree)
data_processed = np.concatenate((data_processed, sinusoids), axis=1)
# 为数据集添加多项式特征。
if polynomial_degree > 0:
polynomials = generate_polynomials(data_normalized, polynomial_degree, normalize_data)
data_processed = np.concatenate((data_processed, polynomials), axis=1)
# Add a column of ones to X.
data_processed = np.hstack((np.ones((num_examples, 1)), data_processed))
# np.hstack 按水平方向(列顺序)堆叠数组构成一个新的数组; np.vstack() 按垂直方向(行顺序)堆叠数组构成一个新的数组
return data_processed, features_mean, features_deviation
引用拷贝是指将一个对象的引用直接赋值给另一个变量,使得两个变量指向同一个对象。这样,在修改其中一个变量所指向的对象时,另一个变量也会随之改变。引用拷贝通常发生在传递参数、返回值等场景中。例如,如果将一个对象作为参数传递给方法,实际上是将该对象的引用传递给了方法,而不是对象本身的拷贝。引用拷贝并非真正意义上的拷贝,而是共享同一份数据。因此,对于引用拷贝的对象,在修改其内部数据时需要注意是否会影响到其他使用该对象的地方。浅拷贝与深拷贝的区别(详解)_深拷贝和浅拷贝的区别-CSDN博客
基本数据类型的特点:直接存储在栈(stack)中的数据。引用数据类型的特点:存储的是该对象在栈中引用,真实的数据存放在堆内存里。引用数据类型在栈中存储了指针,该指针指向堆中该实体的起始地址。当解释器寻找引用值时,会首先检索其在栈中的地址,取得地址后从堆中获得实体。
normalize.py
import numpy as np
def normalize(features):
"""Normalize features.
Normalizes input features X. Returns a normalized version of X where the mean value of
each feature is 0 and deviation is close to 1.
:param features: set of features.
:return: normalized set of features.
"""
# Copy original array to prevent it from changes.
features_normalized = np.copy(features).astype(float)
# Get average values for each feature (column) in X.
features_mean = np.mean(features, 0) # #取纵轴上的平均值 返回一个 1*len(features[0])
# Calculate the standard deviation for each feature.
features_deviation = np.std(features, 0)
# 从每个示例(行)的每个特征(列)中减去平均值,使所有特征都分布在零点附近。
if features.shape[0] > 1:
features_normalized -= features_mean # 广播机制,m*n-1*n
# 对每个特征值进行归一化处理,使所有特征值都接近 [-1:1] 边界。 同时防止除以零的错误。
# features_deviation[features_deviation == 0] = 1
min_eps = np.finfo(features_deviation.dtype).eps
features_deviation = np.maximum(features_deviation, min_eps)
features_normalized /= features_deviation
return features_normalized, features_mean, features_deviation
generate_sinusoids.py
import numpy as np
def generate_sinusoids(dataset, sinusoid_degree):
"""用正弦特征扩展数据集。返回包含更多特征的新特征数组,包括 sin(x).
:param dataset: data set.
:param sinusoid_degree: multiplier for sinusoid parameter multiplications
"""
# Create sinusoids matrix.
num_examples = dataset.shape[0]
sinusoids = np.empty((num_examples, 0)) # array([], shape=(num_examples, 0), dtype=float64)
# 生成指定度数的正弦特征。
for degree in range(1, sinusoid_degree + 1):
sinusoid_features = np.sin(degree * dataset)
sinusoids = np.concatenate((sinusoids, sinusoid_features), axis=1)
# np.concatenate 是numpy中对array进行拼接的函数
# Return generated sinusoidal features.
return sinusoids
generate_polynomials.py
import numpy as np
from .normalize import normalize
def generate_polynomials(dataset, polynomial_degree, normalize_data=False):
"""用一定程度的多项式特征扩展数据集。返回包含更多特征的新特征数组,包括 x1、x2、x1^2、x2^2、x1*x2、x1*x2^2 等。
:param dataset: dataset that we want to generate polynomials for.
:param polynomial_degree: the max power of new features.
:param normalize_data: flag that indicates whether polynomials need to normalized or not.
"""
# Split features on two halves.
# numpy.array_split(ary, indices_or_sections, axis=0) array_split允许indexs_or_sections是一个不等分轴的整数。 对于长度为l的数组,应将其分割为成n个部分,它将返回大小为l//n + 1的l%n个子数组,其余大小为l//n。
features_split = np.array_split(dataset, 2, axis=1)
dataset_1 = features_split[0]
dataset_2 = features_split[1]
# Extract sets parameters.
(num_examples_1, num_features_1) = dataset_1.shape
(num_examples_2, num_features_2) = dataset_2.shape
# Check if two sets have equal amount of rows.
if num_examples_1 != num_examples_2:
raise ValueError('Can not generate polynomials for two sets with different number of rows')
# Check if at list one set has features.
if num_features_1 == 0 and num_features_2 == 0:
raise ValueError('无法为无列的两个集合生成多项式')
# 用非空集替换空集。
if num_features_1 == 0:
dataset_1 = dataset_2
elif num_features_2 == 0:
dataset_2 = dataset_1
# 确保各组具有相同数量的特征,以便能够将它们相乘。
num_features = num_features_1 if num_features_1 < num_examples_2 else num_features_2
dataset_1 = dataset_1[:, :num_features]
dataset_2 = dataset_2[:, :num_features]
# Create polynomials matrix.
polynomials = np.empty((num_examples_1, 0))
# 生成指定度数的多项式特征。
for i in range(1, polynomial_degree + 1):
for j in range(i + 1):
polynomial_feature = (dataset_1 ** (i - j)) * (dataset_2 ** j)
polynomials = np.concatenate((polynomials, polynomial_feature), axis=1)
# Normalize polynomials if needed.
if normalize_data:
polynomials = normalize(polynomials)[0]
# Return generated polynomial features.
return polynomials
在本演示https://github.com/trekhleb/homemade-machine-learning中,将使用 2017 年的 [World Happindes Dataset](https://www.kaggle.com/unsdsn/world-happiness#2017.csv
data = pd.read_csv('../../data/world-happiness-report-2017.csv')
data.shape #(155, 12)
GDP_Happy_Corr = data.corr()
GDP_Happy_Corr
import seaborn as sns
cmap = sns.choose_diverging_palette()
# 使用choose_diverging_palette()方法交互式的进行调色,可以代替diverging_palette()
# 注:仅在jupyter中使用
# 创建热图,并调整参数
sns.heatmap(GDP_Happy_Corr
# ,mask=mask #只显示为true的值
, cmap=cmap
, vmax=.3
, center=0
# ,square=True
, linewidths=.5
, cbar_kws={"shrink": .5}
, annot=True #底图带数字 True为显示数字
)
# 打印每个特征的直方图,查看它们的变化情况。
histohrams = data.hist(grid=False, figsize=(10, 10))
将数据分成训练子集和测试子集;在这一步中,我们将把数据集分成_训练和测试_子集(比例为 80/20%)。训练数据集将用于训练我们的线性模型。测试数据集将用于验证模型。测试数据集中的所有数据对模型来说都是新的,我们可以检查模型预测的准确性。
train_data = data.sample(frac=0.8)
test_data = data.drop(train_data.index)
# Decide what fields we want to process.
input_param_name = 'Economy..GDP.per.Capita.'
output_param_name = 'Happiness.Score'
# Split training set input and output.
x_train = train_data[[input_param_name]].values
y_train = train_data[[output_param_name]].values
# Split test set input and output.
x_test = test_data[[input_param_name]].values
y_test = test_data[[output_param_name]].values
# Plot training data.
plt.scatter(x_train, y_train, label='Training Dataset')
plt.scatter(x_test, y_test, label='Test Dataset')
plt.xlabel(input_param_name)
plt.ylabel(output_param_name)
plt.title('Countries Happines')
plt.legend()
plt.show()
polynomial_degree
(多项式度数)–这个参数可以添加一定度数的多项式特征。特征越多,线条越弯曲。num_iterations
- 这是梯度下降算法用于寻找代价函数最小值的迭代次数。数字过低可能会导致梯度下降算法无法达到最小值。数值过高会延长算法的工作时间,但不会提高其准确性。learning_rate
- 这是梯度下降步骤的大小。小的学习步长会延长算法的工作时间,可能需要更多的迭代才能达到代价函数的最小值。大的学习步长可能会导致算法无法达到最小值,并且成本函数值会随着新的迭代而增长。regularization_param
- 防止过度拟合的参数。参数越高,模型越简单。polynomial_degree
- 附加多项式特征的程度(
‘
x
1
2
∗
x
2
,
x
1
2
∗
x
2
2
,
.
.
.
‘
`x1^2 * x2, x1^2 * x2^2, ...`
‘x12∗x2,x12∗x22,...‘)。这将允许您对预测结果进行曲线处理``sinusoid_degree - 附加特征的正弦参数乘数的度数(
sin(x), sin(2*x), …`)。这将允许您通过在预测曲线中添加正弦分量来绘制预测曲线。
num_iterations = 500 # Number of gradient descent iterations.
regularization_param = 0 # Helps to fight model overfitting.
learning_rate = 0.01 # The size of the gradient descent step.
polynomial_degree = 0 # The degree of additional polynomial features.附加多项式特征的程度。
sinusoid_degree = 0 # The degree of sinusoid parameter multipliers of additional features.附加特征的正弦参数乘数。
# Init linear regression instance.
linear_regression = LinearRegression(x_train, y_train, polynomial_degree, sinusoid_degree)
# Train linear regression.
(theta, cost_history) = linear_regression.train(
learning_rate,
regularization_param,
num_iterations
)
# Print training results.
print('Initial cost: {:.2f}'.format(cost_history[0]))
print('Optimized cost: {:.2f}'.format(cost_history[-1]))
# Print model parameters
theta_table = pd.DataFrame({'Model Parameters': theta.flatten()})
theta_table.head()
既然模型已经训练好了,我们就可以在训练数据集和测试数据集上绘制模型预测图,看看模型与数据的拟合程度如何。
# Get model predictions for the trainint set.
predictions_num = 100
x_predictions = np.linspace(x_train.min(), x_train.max(), predictions_num).reshape(predictions_num, 1);
y_predictions = linear_regression.predict(x_predictions)
# Plot training data with predictions.
plt.scatter(x_train, y_train, label='Training Dataset')
plt.scatter(x_test, y_test, label='Test Dataset')
plt.plot(x_predictions, y_predictions, 'r', label='Prediction')
plt.xlabel('Economy..GDP.per.Capita.')
plt.ylabel('Happiness.Score')
plt.title('Countries Happines')
plt.legend()
plt.show()
多变量线性回归是一种线性回归,它有_多个_输入参数和一个输出标签。演示项目: 在这个演示中,我们将建立一个模型,根据 "人均经济生产总值 "和 "自由度 "参数预测各国的 “幸福指数”。
train_data = data.sample(frac=0.8)
test_data = data.drop(train_data.index)
# 决定我们要处理哪些字段。
input_param_name_1 = 'Economy..GDP.per.Capita.'
input_param_name_2 = 'Freedom'
output_param_name = 'Happiness.Score'
# 分割训练集的输入和输出。
x_train = train_data[[input_param_name_1, input_param_name_2]].values
y_train = train_data[[output_param_name]].values
# Split test set input and output.
x_test = test_data[[input_param_name_1, input_param_name_2]].values
y_test = test_data[[output_param_name]].values
使用训练数据集配置绘图。
import plotly
import plotly.graph_objs as go
# Configure Plotly to be rendered inline in the notebook.
plotly.offline.init_notebook_mode()
plot_training_trace = go.Scatter3d(
x=x_train[:, 0].flatten(),
y=x_train[:, 1].flatten(),
z=y_train.flatten(),
name='Training Set',
mode='markers',
marker={
'size': 10,
'opacity': 1,
'line': {
'color': 'rgb(255, 255, 255)',
'width': 1
},
}
)
# Configure the plot with test dataset.
plot_test_trace = go.Scatter3d(
x=x_test[:, 0].flatten(),
y=x_test[:, 1].flatten(),
z=y_test.flatten(),
name='Test Set',
mode='markers',
marker={
'size': 10,
'opacity': 1,
'line': {
'color': 'rgb(255, 255, 255)',
'width': 1
},
}
)
# Configure the layout.
plot_layout = go.Layout(
title='Date Sets',
scene={
'xaxis': {'title': input_param_name_1},
'yaxis': {'title': input_param_name_2},
'zaxis': {'title': output_param_name}
},
margin={'l': 0, 'r': 0, 'b': 0, 't': 0}
)
plot_data = [plot_training_trace, plot_test_trace]
plot_figure = go.Figure(data=plot_data, layout=plot_layout)
# Render 3D scatter plot.
plotly.offline.iplot(plot_figure)
# Generate different combinations of X and Y sets to build a predictions plane.
predictions_num = 10
# Find min and max values along X and Y axes.
x_min = x_train[:, 0].min();
x_max = x_train[:, 0].max();
y_min = x_train[:, 1].min();
y_max = x_train[:, 1].max();
# Generate predefined numbe of values for eaxh axis betwing correspondent min and max values.
x_axis = np.linspace(x_min, x_max, predictions_num)
y_axis = np.linspace(y_min, y_max, predictions_num)
# Create empty vectors for X and Y axes predictions
# We're going to find cartesian product of all possible X and Y values.
x_predictions = np.zeros((predictions_num * predictions_num, 1))
y_predictions = np.zeros((predictions_num * predictions_num, 1))
# Find cartesian product of all X and Y values.
x_y_index = 0
for x_index, x_value in enumerate(x_axis):
for y_index, y_value in enumerate(y_axis):
x_predictions[x_y_index] = x_value
y_predictions[x_y_index] = y_value
x_y_index += 1
# Predict Z value for all X and Y pairs.
z_predictions = linear_regression.predict(np.hstack((x_predictions, y_predictions)))
# Plot training data with predictions.
# Configure the plot with test dataset.
plot_predictions_trace = go.Scatter3d(
x=x_predictions.flatten(),
y=y_predictions.flatten(),
z=z_predictions.flatten(),
name='Prediction Plane',
mode='markers',
marker={
'size': 1,
},
opacity=0.8,
surfaceaxis=2,
)
plot_data = [plot_training_trace, plot_test_trace, plot_predictions_trace]
plot_figure = go.Figure(data=plot_data, layout=plot_layout)
plotly.offline.iplot(plot_figure)
多项式回归是一种回归分析形式,其中自变量 "x "与因变量 "y "之间的关系被模拟为 "x "的
n
t
h
n^{th}
nth 度多项式。虽然多项式回归将一个非线性模型拟合到数据中,但作为一个统计估计问题,它是线性的,即回归函数 E(y|x)
与根据数据估计的未知参数是线性的。因此,多项式回归被认为是多元线性回归的特例。
data = pd.read_csv('../../data/non-linear-regression-x-y.csv')
# Fetch traingin set and labels.
x = data['x'].values.reshape((data.shape[0], 1))
y = data['y'].values.reshape((data.shape[0], 1))
# Print the data table.
data.head(10)
plt.plot(x, y)
plt.show()
# Set up linear regression parameters.
num_iterations = 50000 # Number of gradient descent iterations.
regularization_param = 0 # Helps to fight model overfitting.
learning_rate = 0.02 # The size of the gradient descent step.
polynomial_degree = 15 # The degree of additional polynomial features.
sinusoid_degree = 15 # The degree of sinusoid parameter multipliers of additional features.
normalize_data = True # Flag that indicates that data needs to be normalized before training.
# Init linear regression instance.
linear_regression = LinearRegression(x, y, polynomial_degree, sinusoid_degree, normalize_data)
# Train linear regression.
(theta, cost_history) = linear_regression.train(
learning_rate,
regularization_param,
num_iterations
)
# Print training results.
print('Initial cost: {:.2f}'.format(cost_history[0]))
print('Optimized cost: {:.2f}'.format(cost_history[-1]))
# Print model parameters
theta_table = pd.DataFrame({'Model Parameters': theta.flatten()})
theta_table
既然模型已经训练完成,我们就可以绘制模型在训练数据集和测试数据集上的预测结果,看看模型与数据的拟合程度如何。
# Get model predictions for the trainint set.
predictions_num = 1000
x_predictions = np.linspace(x.min(), x.max(), predictions_num).reshape(predictions_num, 1);
y_predictions = linear_regression.predict(x_predictions)
# Plot training data with predictions.
plt.scatter(x, y, label='Training Dataset')
plt.plot(x_predictions, y_predictions, 'r', label='Prediction')
plt.show()
tten()})
theta_table
```
[外链图片转存中…(img-g6KhuEn7-1696686291862)]
既然模型已经训练完成,我们就可以绘制模型在训练数据集和测试数据集上的预测结果,看看模型与数据的拟合程度如何。
# Get model predictions for the trainint set.
predictions_num = 1000
x_predictions = np.linspace(x.min(), x.max(), predictions_num).reshape(predictions_num, 1);
y_predictions = linear_regression.predict(x_predictions)
# Plot training data with predictions.
plt.scatter(x, y, label='Training Dataset')
plt.plot(x_predictions, y_predictions, 'r', label='Prediction')
plt.show()