Cell array num = [0,0,3,0] den = [1+0i, 4-6i, -4-18i, -16-12i]
9.[num,den] = tfdata(sys3)
Cell array num = [0,0,3,3] den = [1,4,14,20]
10.[num,den] = tfdata(sys1,’v’)
11. [num,den] = tfdata(sys2,’v’)
12. [num,den] = tfdata(sys3,’v’)
13. [num,den] = zpkdata(sys1)
Cell array num = -1 den = [-0.999999999999998+3i; -0.999999999999998-3i; -1.999999999999999+0i]
14. [num,den] = zpkdata(sys2)
Cell array num = 0 den = [-1+3i; -1+3i; -2+0i]
15. [num,den] = zpkdata(sys3)
Cell array num = -1 den = [-0.999999999999998+3i; -0.999999999999998-3i; -1.999999999999999+0i]
16. [num,den] = zpkdata(sys1,’v’)
17. [num,den] = zpkdata(sys2,’v’)
18. [num,den] = zpkdata(sys3,’v’)
19. [num,den] = ssdata(sys1)
20. [num,den] = ssdata(sys2)
21. [num,den] = ssdata(sys3)
Step and impulse responses
Poles and step response
Effect of zeroes on step response
When all else is equal, an additional closed-loop zero will increase the overshoot of the second-order system step response and decrease the rise time and peak time… 2. The closer the additional zero point is from the left side of the pole to the pole, the more significant (i.e., less) the above effects are. 3. When the zero point is far from the imaginary axis, or very large, the effect of the zero point can be ignored, and then the second-order system without zero point can be used instead.