Overload引擎地址: GitHub - adriengivry/Overload: 3D Game engine with editor
Overload Editor启动之后,场景视图中有栅格线,这个在很多软件中都有。刚开始我猜测它应该是通过绘制线实现的。阅读代码发现,这个栅格的几何网格只有两个三角形面片组成的正方形,使用特殊Shader绘制出来的。

绘制栅格的代码在EditorRenderer.cpp中,代码如下:
- void OvEditor::Core::EditorRenderer::RenderGrid(const OvMaths::FVector3& p_viewPos, const OvMaths::FVector3& p_color)
- {
- constexpr float gridSize = 5000.0f; // 栅格的总的大小
-
- FMatrix4 model = FMatrix4::Translation({ p_viewPos.x, 0.0f, p_viewPos.z }) * FMatrix4::Scaling({ gridSize * 2.0f, 1.f, gridSize * 2.0f }); // 栅格的模型矩阵
- m_gridMaterial.Set("u_Color", p_color); // 栅格的颜色
- m_context.renderer->DrawModelWithSingleMaterial(*m_context.editorResources->GetModel("Plane"), m_gridMaterial, &model); // 绘制栅格
-
- // 绘制坐标轴的三条线
- m_context.shapeDrawer->DrawLine(OvMaths::FVector3(-gridSize + p_viewPos.x, 0.0f, 0.0f), OvMaths::FVector3(gridSize + p_viewPos.x, 0.0f, 0.0f), OvMaths::FVector3(1.0f, 0.0f, 0.0f), 1.0f);
- m_context.shapeDrawer->DrawLine(OvMaths::FVector3(0.0f, -gridSize + p_viewPos.y, 0.0f), OvMaths::FVector3(0.0f, gridSize + p_viewPos.y, 0.0f), OvMaths::FVector3(0.0f, 1.0f, 0.0f), 1.0f);
- m_context.shapeDrawer->DrawLine(OvMaths::FVector3(0.0f, 0.0f, -gridSize + p_viewPos.z), OvMaths::FVector3(0.0f, 0.0f, gridSize + p_viewPos.z), OvMaths::FVector3(0.0f, 0.0f, 1.0f), 1.0f);
- }
从中看出,先将面片平移到视点的前方,使得三角形始终在视锥体范围内,同时将三角形进行缩放,总的尺寸缩放到10000。然后使用m_gridMaterial材质进行绘制。所谓的材质就是Shader的封装。最后再绘制坐标轴的三条线。
可以使用RenderDoc抓帧,可以验证确实是这么实现的。

绘制栅格的Vertex Shader代码如下:
- #version 430 core
-
- layout (location = 0) in vec3 geo_Pos;
- layout (location = 1) in vec2 geo_TexCoords;
- layout (location = 2) in vec3 geo_Normal;
-
- layout (std140) uniform EngineUBO
- {
- mat4 ubo_Model;
- mat4 ubo_View;
- mat4 ubo_Projection;
- vec3 ubo_ViewPos;
- float ubo_Time;
- };
-
- out VS_OUT
- {
- vec3 FragPos;
- vec2 TexCoords;
- } vs_out;
-
- void main()
- {
- vs_out.FragPos = vec3(ubo_Model * vec4(geo_Pos, 1.0)); // 计算顶点世界坐标系坐标
- vs_out.TexCoords = vs_out.FragPos.xz; // 对应的纹理坐标,取对应的世界坐标
-
- gl_Position = ubo_Projection * ubo_View * vec4(vs_out.FragPos, 1.0); // 计算NDC坐标
- }
Vertex Shader的代码相对较简单,有效的输入只有geo_Pos。EngineUBO是OpenGL的UBO变量,传入了模型、视图、投影矩阵。main方法中,计算了三角形的世界坐标系坐标、纹理坐标、输出gl_Position变量。
Fragment Shader的代码如下:
-
- #version 430 core
-
- out vec4 FRAGMENT_COLOR;
-
- layout (std140) uniform EngineUBO
- {
- mat4 ubo_Model;
- mat4 ubo_View;
- mat4 ubo_Projection;
- vec3 ubo_ViewPos;
- float ubo_Time;
- };
-
- in VS_OUT
- {
- vec3 FragPos;
- vec2 TexCoords;
- } fs_in;
-
- uniform vec3 u_Color;
-
- float MAG(float p_lp)
- {
- const float lineWidth = 1.0f;
-
- const vec2 coord = fs_in.TexCoords / p_lp;
- const vec2 grid = abs(fract(coord - 0.5) - 0.5) / fwidth(coord);
- const float line = min(grid.x, grid.y);
- const float lineResult = lineWidth - min(line, lineWidth);
-
- return lineResult;
- }
-
- float Grid(float height, float a, float b, float c)
- {
- const float cl = MAG(a);
- const float ml = MAG(b);
- const float fl = MAG(c);
-
- const float cmit = 10.0f;
- const float cmet = 40.0f;
- const float mfit = 80.0f;
- const float mfet = 160.0f;
-
- const float df = clamp((height - cmit) / (cmet - cmit), 0.0f, 1.0f);
- const float dff = clamp((height - mfit) / (mfet - mfit), 0.0f, 1.0f);
-
- const float inl = mix(cl, ml, df);
- const float fnl = mix(inl, fl, dff);
-
- return fnl;
- }
-
- void main()
- {
- const float height = distance(ubo_ViewPos.y, fs_in.FragPos.y);
-
- const float gridA = Grid(height, 1.0f, 4.0f, 8.0f);
- const float gridB = Grid(height, 4.0f, 16.0f, 32.0f);
-
- const float grid = gridA * 0.5f + gridB;
-
- // const vec2 viewdirW = ubo_ViewPos.xz - fs_in.FragPos.xz;
- // const float viewdist = length(viewdirW);
-
- FRAGMENT_COLOR = vec4(u_Color, grid);
- }
Fragment shader的代码没有看太明白,需要的时候再分析吧。
相比之下,绘制坐标轴线的Shader就简单太多了。线的顶点使用两个uniform变量传入线的两个顶点,根据gl_VertexID判断使用哪个顶点。FS直接给出颜色。
- ############ Vertex Shader ###########
-
- #version 430 core
-
- uniform vec3 start;
- uniform vec3 end;
- uniform mat4 viewProjection;
-
- void main()
- {
- vec3 position = gl_VertexID == 0 ? start : end;
- gl_Position = viewProjection * vec4(position, 1.0);
- }
-
-
- ######## Fragment Shader #############
- #version 430 core
-
- uniform vec3 color;
-
- out vec4 FRAGMENT_COLOR;
-
- void main()
- {
- FRAGMENT_COLOR = vec4(color, 1.0);
- }
对应CPU端的代码:
- void OvRendering::Core::ShapeDrawer::DrawLine(const OvMaths::FVector3& p_start, const OvMaths::FVector3& p_end, const OvMaths::FVector3& p_color, float p_lineWidth)
- {
- // 绑定line Shader
- m_lineShader->Bind();
-
- m_lineShader->SetUniformVec3("start", p_start); // 线的起点
- m_lineShader->SetUniformVec3("end", p_end); // 线的终点
- m_lineShader->SetUniformVec3("color", p_color); // 线的颜色
-
- // 绘制线
- m_renderer.SetRasterizationMode(OvRendering::Settings::ERasterizationMode::LINE);
- m_renderer.SetRasterizationLinesWidth(p_lineWidth);
- // 掉Draw call
- m_renderer.Draw(*m_lineMesh, Settings::EPrimitiveMode::LINES);
- m_renderer.SetRasterizationLinesWidth(1.0f);
- m_renderer.SetRasterizationMode(OvRendering::Settings::ERasterizationMode::FILL);
-
- m_lineShader->Unbind();
- }
这里有个m_lineMesh对象,其包含两个随意的顶点即可,只是为了启动两次顶点着色器,真实的顶点坐标是靠uniform传入的。Overload将其全部初始化为0:
- std::vector
vertices; - vertices.push_back
- ({
- 0, 0, 0,// 坐标
- 0, 0, // 纹理
- 0, 0, 0,// 法线
- 0, 0, 0,
- 0, 0, 0
- });
- vertices.push_back
- ({
- 0, 0, 0,
- 0, 0,
- 0, 0, 0,
- 0, 0, 0,
- 0, 0, 0
- });
-
- m_lineMesh = new Resources::Mesh(vertices, { 0, 1 }, 0);