reduce
reduce
操作可以从一组元素中规约生成一个值, 它可以实现多种操作, 在java流中max
, min
, sum
, count
的本质都是规约操作; 下面是规约操作的定义, 它通过一个初始值identity
进行累加, 最后生成一个值, 在并发并发情况下, 还可能会需要对多个累加的值进行合并
<U> U reduce(U identity,
BiFunction<U, ? super T, U> accumulator,
BinaryOperator<U> combiner);
max
下面是对reduce
的一个最基本的使用, 找到长度最大的字符串的值; 它从第一个元素开始累计, 每次对比两个元素并取较大的元素; 如此进行累加, 最后得到的便是最大的元素
System.out.println(Stream.of("I", "love", "you", "too")
.reduce((s1, s2) -> s1.length() >= s2.length() ? s1 : s2)
.orElse(null));
System.out.println(Stream.of("I", "love", "you", "too")
.max((s1, s2) -> s1.length() - s2.length())
.orElse(null));
sum
max
无需指定幺元identity
和combiner
因为它是从第一个元素开始累加的; 其会从第一个元素开始累积, 并且会调用acuumulator
进行combine
; 而sum
方法需要自己指定初始值为0
, 并指定combiner
的逻辑为两个分段的相加, 如下面的例子计算流中的字符数
public void totalLength() {
System.out.println(Stream.of("I", "love", "you", "too")
.reduce(0
, (total, s) -> total + s.length()
, (a, b) -> a + b));
}
collect
相比于之前的通过reduce
生成单个元素, collect
可以生成一个新的集合; 它也是java Stream中最灵活的api, 下面是将Java流转化为各种集合的例子, 它将字符串集合转化为了字符串列表和字符串与字符串长度映射的map, 为了方便操作, jdk还为我们提供了Collectors
工具类, 包含了大多数jdk自带类型的操作:
public void collect() {
System.out.println(Stream.of("I", "love", "you", "too")
.collect(ArrayList::new, ArrayList::add, ArrayList::addAll)
.toString());
System.out.println(Stream.of("I", "love", "you", "too")
.collect(Collectors.toList())
.toString());
System.out.println(Stream.of("I", "love", "you", "too")
.collect(Collectors.toCollection(LinkedList::new))
.toString());
}
除了对集合的collect
, 对于字符串还有一些扩展的功能, 如join
, 下面会将字符串包裹在大括号中, 并使用,
进行分隔
public void collectorJoin() {
String collect = Stream.of("I", "love", "you", "too")
.collect(Collectors.joining(",", "{", "}"));
System.out.println(collect);
}
collect
不仅可以根据集合中的数据直接生成map, 如下面就生成字符串与长度的map
public void collectToMap() {
Map<String, Integer> collect = Stream.of("I", "love", "you", "too")
.collect(Collectors.toMap(Function.identity(), String::length));
System.out.println(collect);
}
还可以通过groupby
进行分组, 如下面的例子中就根据字符串的长度进行分组, groupCollector
是根据某个classifier
进行分组, 而partitioningBy
是根据predicate
进行分组即将符合条件和不符合条件的分为两组
public void groupCollector() {
Map<Integer, List<String>> collect = Stream.of("I", "love", "you", "too")
.collect(Collectors.groupingBy(String::length));
System.out.println(collect);
}
public void partitionCollector() {
Map<Boolean, List<String>> collect = Stream.of("I", "love", "you", "too")
.collect(Collectors.partitioningBy(s -> s.length() > 3));
System.out.println(collect);
}
有的时候, 我们分组后并不想要原来的数据, 而是想要获得加工后的数据, collect
提供了下游处理器downstream
对分组后的结果进行处理; 如下面的例子中, 就对分组后的结果进行计数
public void collectorDownstream() {
Map<Integer, Long> collect = Stream.of("I", "love", "you", "too")
.collect(Collectors.groupingBy(String::length, Collectors.counting()));
System.out.println(collect);
}