复合函数和分段函数的表示和应用
复合函数中我们讨论过函数 g , f g,f g,f复合为 f ∘ g f\circ{g} f∘g的条件是 R g ∩ D f = ∅ R_{g}\cap{D_f}=\emptyset Rg∩Df=∅,并且 f ∘ g f\circ{g} f∘g的定义域为 { x ∣ g ( x ) ∈ D f } \set{x|g(x)\in{D_{f}}} {x∣g(x)∈Df}
函数间的初等运算
f ( x ) = { ( x − 1 ) 2 x ⩽ 1 1 x − 1 x > 1 f(x)=\begin{cases}(x-1)^2&x\leqslant{1}\\\frac{1}{x-1}&x>1\end{cases} f(x)={(x−1)2x−11x⩽1x>1
g ( x ) = { 2 x x > 0 3 x x ⩽ 0 g(x)=\begin{cases}2x&x>0\\3x&x\leqslant{0}\end{cases} g(x)={2x3xx>0x⩽0
求 f ( g ( x ) ) f(g(x)) f(g(x))
解
初步复合
进一步展开
化简
f ( g ( x ) ) = { ( 2 x − 1 ) 2 x ∈ ( 0 , 1 2 ] ( 3 x − 1 ) 2 x ∈ ( − ∞ , 0 ] 1 2 x − 1 x ∈ [ 1 2 , + ∞ ) 3 2 x − 1 x ∈ ∅ f(g(x))=\begin{cases} (2x-1)^2 &x\in(0,\frac{1}{2}]\\ (3x-1)^2 &x\in(-\infin,0]\\ \frac{1}{2x-1} &x\in[\frac{1}{2},+\infin)\\ \frac{3}{2x-1} &x\in\emptyset \end{cases} f(g(x))=⎩ ⎨ ⎧(2x−1)2(3x−1)22x−112x−13x∈(0,21]x∈(−∞,0]x∈[21,+∞)x∈∅
舍去空集定义域部分
f
(
g
(
x
)
)
=
{
(
2
x
−
1
)
2
x
∈
(
0
,
1
2
]
(
3
x
−
1
)
2
x
∈
(
−
∞
,
0
]
1
2
x
−
1
x
∈
[
1
2
,
+
∞
)
f(g(x))=\begin{cases} (2x-1)^2 &x\in(0,\frac{1}{2}]\\ (3x-1)^2 &x\in(-\infin,0]\\ \frac{1}{2x-1} &x\in[\frac{1}{2},+\infin)\\ \end{cases}
f(g(x))=⎩
⎨
⎧(2x−1)2(3x−1)22x−11x∈(0,21]x∈(−∞,0]x∈[21,+∞)
f ( x ) = { 1 3 , − 1 ⩽ x ⩽ 2 0 , e l s e f(x)=\begin{cases} \frac{1}{3},&-1\leqslant x\leqslant 2\\0,&else \end{cases} f(x)={31,0,−1⩽x⩽2else
g ( x ) = − x g(x)=-x g(x)=−x
h = f ( g ( x ) ) = f ( − x ) = { 1 3 , − 1 ⩽ − x ⩽ 2 0 , e l s e = { 1 3 , − 2 ⩽ x ⩽ 1 0 , e l s e h=f(g(x))= f(-x)=\begin{cases} \frac{1}{3},&-1\leqslant \boxed{-x}\leqslant 2 \\0,&else \end{cases} =\begin{cases} \frac{1}{3},&-2\leqslant x\leqslant 1 \\0,&else \end{cases} h=f(g(x))=f(−x)={31,0,−1⩽−x⩽2else={31,0,−2⩽x⩽1else