一、写在前面
这一期,我们介绍AdaBoost回归。
同样,这里使用这个数据:
《PLoS One》2015年一篇题目为《Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China》文章的公开数据做演示。数据为江苏省2004年1月至2012年12月肾综合症出血热月发病率。运用2004年1月至2011年12月的数据预测2012年12个月的发病率数据。
二、AdaBoost回归
(1)代码解读
sklearn.ensemble.AdaBoostRegressor(estimator=None, *, n_estimators=50, learning_rate=1.0, loss='linear', random_state=None, base_estimator='deprecated')
咋一看,跟AdaBoostClassifier(用于分类,上传送门)参数也差不多,因此,我们列举出它们相同和不同的地方,便于对比记忆:
共同的参数:
base_estimator: 基估计器用于训练弱学习器。如果为 None,分类器默认使用决策树分类器,而回归器默认使用决策树回归器。
n_estimators: 最大的弱学习器数量。
learning_rate: 按指定的学习率缩小每个弱学习器的贡献。
random_state: 随机数生成器的种子或随机数生成器。
algorithm: 用于 AdaBoost 算法的执行版本。在分类器中是 {"SAMME", "SAMME.R"},在回归器中只有 "SAMME"。
差异:
AdaBoostClassifier 特有参数:
algorithm: 可选的执行算法可以是 "SAMME" 或 "SAMME.R"。默认为 "SAMME.R"。其中 "SAMME.R" 是 "SAMME" 的实值版本,它通常表现得更好,因为它依赖于类别概率,而不是类别预测。
AdaBoostRegressor 特有参数:
loss: 在增加新的弱学习器时用于更新权重的损失函数。可选的值包括 'linear', 'square', 和 'exponential'。
综上可见,虽然这两个类的大部分参数都很相似,但它们的主要区别在于分类器具有两种执行算法("SAMME" 和 "SAMME.R"),而回归器则添加了一个 loss 参数来定义更新权重时使用的损失函数。
(2)单步滚动预测
- import pandas as pd
- import numpy as np
- from sklearn.metrics import mean_absolute_error, mean_squared_error
- from sklearn.ensemble import AdaBoostRegressor
- from sklearn.model_selection import GridSearchCV
-
- data = pd.read_csv('data.csv')
-
- # 将时间列转换为日期格式
- data['time'] = pd.to_datetime(data['time'], format='%b-%y')
-
- # 拆分输入和输出
- lag_period = 6
-
- # 创建滞后期特征
- for i in range(lag_period, 0, -1):
- data[f'lag_{i}'] = data['incidence'].shift(lag_period - i + 1)
-
- # 删除包含NaN的行
- data = data.dropna().reset_index(drop=True)
-
- # 划分训练集和验证集
- train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
- validation_data = data[(data['time'] >= '2012-01-01') & (data['time'] <= '2012-12-31')]
-
- # 定义特征和目标变量
- X_train = train_data[['lag_1', 'lag_2', 'lag_3', 'lag_4', 'lag_5', 'lag_6']]
- y_train = train_data['incidence']
- X_validation = validation_data[['lag_1', 'lag_2', 'lag_3', 'lag_4', 'lag_5', 'lag_6']]
- y_validation = validation_data['incidence']
-
- # 初始化AdaBoostRegressor模型
- adaboost_model = AdaBoostRegressor()
-
- # 定义参数网格
- param_grid = {
- 'n_estimators': [50, 100, 150],
- 'learning_rate': [0.01, 0.05, 0.1, 0.5, 1],
- 'loss': ['linear', 'square', 'exponential']
- }
-
- # 初始化网格搜索
- grid_search = GridSearchCV(adaboost_model, param_grid, cv=5, scoring='neg_mean_squared_error')
-
- # 进行网格搜索
- grid_search.fit(X_train, y_train)
-
- # 获取最佳参数
- best_params = grid_search.best_params_
-
- # 使用最佳参数初始化AdaBoostRegressor模型
- best_adaboost_model = AdaBoostRegressor(**best_params)
-
- # 在训练集上训练模型
- best_adaboost_model.fit(X_train, y_train)
-
- # 对于验证集,我们需要迭代地预测每一个数据点
- y_validation_pred = []
-
- for i in range(len(X_validation)):
- if i == 0:
- pred = best_adaboost_model.predict([X_validation.iloc[0]])
- else:
- new_features = list(X_validation.iloc[i, 1:]) + [pred[0]]
- pred = best_adaboost_model.predict([new_features])
- y_validation_pred.append(pred[0])
-
- y_validation_pred = np.array(y_validation_pred)
-
- # 计算验证集上的MAE, MAPE, MSE和RMSE
- mae_validation = mean_absolute_error(y_validation, y_validation_pred)
- mape_validation = np.mean(np.abs((y_validation - y_validation_pred) / y_validation))
- mse_validation = mean_squared_error(y_validation, y_validation_pred)
- rmse_validation = np.sqrt(mse_validation)
-
- # 计算训练集上的MAE, MAPE, MSE和RMSE
- y_train_pred = best_adaboost_model.predict(X_train)
- mae_train = mean_absolute_error(y_train, y_train_pred)
- mape_train = np.mean(np.abs((y_train - y_train_pred) / y_train))
- mse_train = mean_squared_error(y_train, y_train_pred)
- rmse_train = np.sqrt(mse_train)
-
- print("Train Metrics:", mae_train, mape_train, mse_train, rmse_train)
- print("Validation Metrics:", mae_validation, mape_validation, mse_validation, rmse_validation)
看结果:
(3)多步滚动预测-vol. 1
AdaBoostRegressor预期的目标变量y应该是一维数组,所以你们懂的。
(4)多步滚动预测-vol. 2
同上。
(5)多步滚动预测-vol. 3
- import pandas as pd
- import numpy as np
- from sklearn.ensemble import AdaBoostRegressor
- from sklearn.model_selection import GridSearchCV
- from sklearn.metrics import mean_absolute_error, mean_squared_error
-
- # 数据读取和预处理
- data = pd.read_csv('data.csv')
- data_y = pd.read_csv('data.csv')
- data['time'] = pd.to_datetime(data['time'], format='%b-%y')
- data_y['time'] = pd.to_datetime(data_y['time'], format='%b-%y')
-
- n = 6
-
- for i in range(n, 0, -1):
- data[f'lag_{i}'] = data['incidence'].shift(n - i + 1)
-
- data = data.dropna().reset_index(drop=True)
- train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
- X_train = train_data[[f'lag_{i}' for i in range(1, n+1)]]
- m = 3
-
- X_train_list = []
- y_train_list = []
-
- for i in range(m):
- X_temp = X_train
- y_temp = data_y['incidence'].iloc[n + i:len(data_y) - m + 1 + i]
-
- X_train_list.append(X_temp)
- y_train_list.append(y_temp)
-
- for i in range(m):
- X_train_list[i] = X_train_list[i].iloc[:-(m-1)]
- y_train_list[i] = y_train_list[i].iloc[:len(X_train_list[i])]
-
- # 模型训练
- param_grid = {
- 'n_estimators': [50, 100, 150],
- 'learning_rate': [0.01, 0.05, 0.1, 0.5, 1],
- 'loss': ['linear', 'square', 'exponential']
- }
-
- best_ada_models = []
-
- for i in range(m):
- grid_search = GridSearchCV(AdaBoostRegressor(), param_grid, cv=5, scoring='neg_mean_squared_error')
- grid_search.fit(X_train_list[i], y_train_list[i])
- best_ada_model = AdaBoostRegressor(**grid_search.best_params_)
- best_ada_model.fit(X_train_list[i], y_train_list[i])
- best_ada_models.append(best_ada_model)
-
- validation_start_time = train_data['time'].iloc[-1] + pd.DateOffset(months=1)
- validation_data = data[data['time'] >= validation_start_time]
-
- X_validation = validation_data[[f'lag_{i}' for i in range(1, n+1)]]
- y_validation_pred_list = [model.predict(X_validation) for model in best_ada_models]
- y_train_pred_list = [model.predict(X_train_list[i]) for i, model in enumerate(best_ada_models)]
-
- def concatenate_predictions(pred_list):
- concatenated = []
- for j in range(len(pred_list[0])):
- for i in range(m):
- concatenated.append(pred_list[i][j])
- return concatenated
-
- y_validation_pred = np.array(concatenate_predictions(y_validation_pred_list))[:len(validation_data['incidence'])]
- y_train_pred = np.array(concatenate_predictions(y_train_pred_list))[:len(train_data['incidence']) - m + 1]
-
- mae_validation = mean_absolute_error(validation_data['incidence'], y_validation_pred)
- mape_validation = np.mean(np.abs((validation_data['incidence'] - y_validation_pred) / validation_data['incidence']))
- mse_validation = mean_squared_error(validation_data['incidence'], y_validation_pred)
- rmse_validation = np.sqrt(mse_validation)
- print("验证集:", mae_validation, mape_validation, mse_validation, rmse_validation)
-
- mae_train = mean_absolute_error(train_data['incidence'][:-(m-1)], y_train_pred)
- mape_train = np.mean(np.abs((train_data['incidence'][:-(m-1)] - y_train_pred) / train_data['incidence'][:-(m-1)]))
- mse_train = mean_squared_error(train_data['incidence'][:-(m-1)], y_train_pred)
- rmse_train = np.sqrt(mse_train)
- print("训练集:", mae_train, mape_train, mse_train, rmse_train)
结果:
三、数据
链接:https://pan.baidu.com/s/1EFaWfHoG14h15KCEhn1STg?pwd=q41n
提取码:q41n