• LeetCode //C - 909. Snakes and Ladders


    909. Snakes and Ladders

    You are given an n x n integer matrix board where the cells are labeled from 1 to n2 in a Boustrophedon style starting from the bottom left of the board (i.e. board[n - 1][0]) and alternating direction each row.

    You start on square 1 of the board. In each move, starting from square curr, do the following:

    • Choose a destination square next with a label in the range [curr + 1, min(curr + 6, n2)].
      • This choice simulates the result of a standard 6-sided die roll: i.e., there are always at most 6 destinations, regardless of the size of the board.
    • If next has a snake or ladder, you must move to the destination of that snake or ladder. Otherwise, you move to next.
    • The game ends when you reach the square n2.

    A board square on row r and column c has a snake or ladder if board[r][c] != -1. The destination of that snake or ladder is board[r][c]. Squares 1 and n2 do not have a snake or ladder.

    Note that you only take a snake or ladder at most once per move. If the destination to a snake or ladder is the start of another snake or ladder, you do not follow the subsequent snake or ladder.

    • For example, suppose the board is [[-1,4],[-1,3]], and on the first move, your destination square is 2. You follow the ladder to square 3, but do not follow the subsequent ladder to 4.

    Return the least number of moves required to reach the square n2. If it is not possible to reach the square, return -1.
     

    Example 1:

    在这里插入图片描述

    Input: board = [[-1,-1,-1,-1,-1,-1],[-1,-1,-1,-1,-1,-1],[-1,-1,-1,-1,-1,-1],[-1,35,-1,-1,13,-1],[-1,-1,-1,-1,-1,-1],[-1,15,-1,-1,-1,-1]]
    Output: 4
    Explanation:
    In the beginning, you start at square 1 (at row 5, column 0).
    You decide to move to square 2 and must take the ladder to square 15.
    You then decide to move to square 17 and must take the snake to square 13.
    You then decide to move to square 14 and must take the ladder to square 35.
    You then decide to move to square 36, ending the game.
    This is the lowest possible number of moves to reach the last square, so return 4.

    Example 2:

    Input: board = [[-1,-1],[-1,3]]
    Output: 1

    Constraints:
    • n == board.length == board[i].length
    • 2 <= n <= 20
    • board[i][j] is either -1 or in the range [ 1 , n 2 1, n^2 1,n2].
    • The squares labeled 1 and n 2 n^2 n2 do not have any ladders or snakes.

    From: LeetCode
    Link: 909. Snakes and Ladders


    Solution:

    Ideas:
    1. Convert the 2D board into a 1D array, where each cell in the array represents a cell on the board.
    2. Start BFS from the first cell of the array.
    3. For each cell, try to move to the next 1 to 6 cells. If the cell has a snake or ladder, jump to the destination of the snake or ladder.
    4. Keep track of the number of moves needed to reach each cell.
    5. When you reach the last cell, return the number of moves needed.
    Code:
    int snakesAndLadders(int** board, int boardSize, int* boardColSize) {
        int n = boardSize;
        int totalCells = n * n;
        int* moves = (int*)malloc((totalCells + 1) * sizeof(int));
        for (int i = 0; i <= totalCells; ++i) moves[i] = -1;
        moves[1] = 0;
        
        int* queue = (int*)malloc((totalCells + 1) * sizeof(int));
        int front = 0, rear = 0;
        queue[rear++] = 1;
        
        while (front < rear) {
            int curr = queue[front++];
            for (int i = 1; i <= 6 && curr + i <= totalCells; ++i) {
                int next = curr + i;
                int row = n - 1 - (next - 1) / n;
                int col = ((n - 1 - row) % 2 == 0) ? (next - 1) % n : n - 1 - (next - 1) % n;
                if (board[row][col] != -1) next = board[row][col];
                if (moves[next] == -1) {
                    moves[next] = moves[curr] + 1;
                    if (next == totalCells) return moves[next];
                    queue[rear++] = next;
                }
            }
        }
        
        free(moves);
        free(queue);
        
        return -1;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
  • 相关阅读:
    Oracle:poor sql导致的latch: cache buffers chains案例
    基于Java实现的Lex词法分析器
    Pwn The Box——easysql
    网页优化(布局优化、图片优化)
    论文笔记:利用词对比注意增强预训练汉字表征
    c语言数组该怎么去理解
    【人工智能】第四部分:ChatGPT的技术实现
    Python编程基础 | Python编程基础内置函数
    威纶通软件安装(一步一步,包成功)
    MYSQL调优之思路----sql语句和索引调优
  • 原文地址:https://blog.csdn.net/navicheung/article/details/133337294