在二维平面有n个点,如何画一条直线,使得所有点到该直线距离之和最短
如果能找到,请给出其损失函数
关于损失函数:
也即代价函数,是一个量化误差的表达式
参考链接:线性回归与非线性回归:1.0一元线性回归与代价函数(损失函数)_在一元线性回归中,哪个函数不适用于损失函数(-CSDN博客
本文中我们采用`观测值与实际值差的平方`作为损失函数
具体原理参考链接:知乎形象举例——梯度下降算法
下面是MSE函数,但是我这里就没有除以2了,所以偏导应当有一个2倍
对于此问题,我们应当按如下步骤进行求解
首先,我们需要对于指定初始的k与b初始化该直线
然后,对学习率(也即步长)和迭代次数进行适当调整
最后,在得到满意的结果后终止调整,整理结果,给出最终参数
我们用的并不是直线距离进行损失计算,而是用的△y进行计算,
但是结果并没有影响,因为经过推倒后,距离d与△y成正比
本文参考多方资料,使用python代码手写一元线性回归进行求解
计算当前参数下的最小二乘法结果:
- def calcLoseFunction(k,b,XData,YData):
- sum=0
- for i in range(0,listSize):
- # 使用偏离值的平方进行累和
- sum+=(YData[i]-(k*XData[i]+b))**2
- return sum
梯度下降法进行搜索:
- #梯度下降法
- def calcGradientCorrection(b, k, XData, YData, learningRate, bfsNums):
- for i in range(0, bfsNums):
- sumk, sumb = 0, 0
- for j in range(0, listSize):
- # 定义预测值Y'
- normalNum = k * XData[j] + b
- # 计算逆梯度累和
- sumk += -(1 / listSize) * (normalNum - YData[j]) * XData[j]
- sumb += -(1 / listSize) * (normalNum - YData[j])
- # 在逆梯度的方向上进行下一步搜索
- k += learningRate * sumk
- b += learningRate * sumb
- return k, b
采用随机来对点进行生成,大部分测试较为稳定,模型较为拟合
但是由于X,Y都进行随机生成,按照期望来说,在100*100的矩阵范围内数据呈现均匀分布
于是改造Y数据生成方式为:
YData=[XData[i]+generateRandomInteger(-10,10) for i in range(listSize) ]
调整初始斜率k=0.5进行测试,最终结果较为拟合,效果较好
- import numpy #发现直接用List就行了
- import random
- import matplotlib.pyplot as plt
- # random.random()
- # random.randint(start,stop)
- #################全局数据定义区
- # 数组大小
- listSize=10
- # 定义学习率 取尽量小0.001
- learningRate=0.0001
- #定义初始直线的 斜率k 和 截距b 45° 1单位距离
- # 现在设置 k=0.5 检验程序
- k,b=0.5,1
- #定义迭代次数
- bfsNums=9999
- #################全局数据定义区END
- # 生成随机数
- def generateRandomInteger(start, end):
- # [1-100]
- return random.randint(start, end)
-
- # 打印本次随机生成的X,Y 便于快速粘贴复现
- def printXYArray(XData,YData):
- # 打印X
- print("[", ",".join([str(i) for i in XData]), "]")
- # 打印Y
- print("[", ",".join([str(i) for i in YData]), "]")
-
- # 最小二乘法定义损失函数 并计算
- #参考链接:https://blog.csdn.net/zy_505775013/article/details/88683460
- # 求最小二乘法的最小值 最终结果应当是在learningRate一定情况下 这个最小的sum
- def calcLoseFunction(k,b,XData,YData):
- sum=0
- for i in range(0,listSize):
- # 使用偏离值的平方进行累和
- sum+=(YData[i]-(k*XData[i]+b))**2
- return sum
-
- #梯度下降法
- def calcGradientCorrection(b, k, XData, YData, learningRate, bfsNums):
- for i in range(0, bfsNums):
- sumk, sumb = 0, 0
- for j in range(0, listSize):
- # 定义预测值Y'
- normalNum = k * XData[j] + b
- # 计算逆梯度累和 注意这里求偏导应当是两倍 不知道为什么写成1了
- # 求MSE的偏导
- sumk += -(2 / listSize) * (normalNum - YData[j]) * XData[j]
- sumb += -(2 / listSize) * (normalNum - YData[j])
- # 在逆梯度的方向上进行下一步搜索
- k += learningRate * sumk
- b += learningRate * sumb
- return k, b
-
- # 随机生成横坐标
- XData=[generateRandomInteger(1,100) for i in range(listSize) ]
- # 随机生成纵坐标
- YData=[XData[i]+generateRandomInteger(-10,10) for i in range(listSize) ]
- # 纯随机生成 但是可视化效果不直观
- # YData=[generateRandomInteger(1,100) for i in range(listSize) ]
- # 死值替换区
- # XData=testArrayX
- # YData=testArrayY
-
- print("初始选取k={},b={}的情况下的损失函数值为sum={}".format(k,b,calcLoseFunction(k,b,XData,YData)))
- # 对k,b进行梯度修正
- k,b=calcGradientCorrection(b,k,XData,YData,learningRate,bfsNums)
- print("修正后:k={},b={},最小损失sum={}".format(k,b,calcLoseFunction(k,b, XData, YData)))
- print("调试数组")
- printXYArray(XData,YData)
-
- #画图
- plt.plot(XData, YData, 'b.')
- plt.plot(XData, k*numpy.array(XData)+b, 'r')
- plt.show()
- print("END")
如果替换在三维空间会怎么样,如何去求?
答:在三维空间内,我们就需要对三个变量(K1,K2,b)进行偏导求解,然后同样在逆梯度方向上搜索求解。注意要替换对应的损失函数,将直线方程进行替换即可!