460. LFU 缓存
请你为 最不经常使用(LFU)缓存算法设计并实现数据结构。
实现 LFUCache 类:
当一个键首次插入到缓存中时,它的使用计数器被设置为 1 (由于 put 操作)。对缓存中的键执行 get 或 put 操作,使用计数器的值将会递增。
函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。
示例:
提示:
struct Node {
int cnt, time, key, value;
Node(int _cnt, int _time, int _key, int _value):cnt(_cnt), time(_time), key(_key), value(_value){}
bool operator < (const Node& rhs) const {
return cnt == rhs.cnt ? time < rhs.time : cnt < rhs.cnt;
}
};
class LFUCache {
// 缓存容量,时间戳
int capacity, time;
unordered_map<int, Node> key_table;
set<Node> S;
public:
LFUCache(int _capacity) {
capacity = _capacity;
time = 0;
key_table.clear();
S.clear();
}
int get(int key) {
if (capacity == 0) return -1;
auto it = key_table.find(key);
// 如果哈希表中没有键 key,返回 -1
if (it == key_table.end()) return -1;
// 从哈希表中得到旧的缓存
Node cache = it -> second;
// 从平衡二叉树中删除旧的缓存
S.erase(cache);
// 将旧缓存更新
cache.cnt += 1;
cache.time = ++time;
// 将新缓存重新放入哈希表和平衡二叉树中
S.insert(cache);
it -> second = cache;
return cache.value;
}
void put(int key, int value) {
if (capacity == 0) return;
auto it = key_table.find(key);
if (it == key_table.end()) {
// 如果到达缓存容量上限
if (key_table.size() == capacity) {
// 从哈希表和平衡二叉树中删除最近最少使用的缓存
key_table.erase(S.begin() -> key);
S.erase(S.begin());
}
// 创建新的缓存
Node cache = Node(1, ++time, key, value);
// 将新缓存放入哈希表和平衡二叉树中
key_table.insert(make_pair(key, cache));
S.insert(cache);
}
else {
// 这里和 get() 函数类似
Node cache = it -> second;
S.erase(cache);
cache.cnt += 1;
cache.time = ++time;
cache.value = value;
S.insert(cache);
it -> second = cache;
}
}
};
(1) 哈希表+二叉平衡树