• 回归预测 | MATLAB实现RUN-XGBoost龙格库塔优化极限梯度提升树多输入回归预测


    回归预测 | MATLAB实现RUN-XGBoost多输入回归预测

    预测效果

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    基本介绍

    MATLAB实现RUN-XGBoost多输入回归预测(完整源码和数据)
    1.龙格库塔优化XGBoost,数据为多输入回归数据,输入7个特征,输出1个变量,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。
    2.运行环境MATLAB2018b及以上。
    3.附赠案例数据可直接运行main一键出图~
    4.注意程序和数据放在一个文件夹。
    5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

    程序设计

    %% Main Loop of RUN 
    it=1;%Number of iterations
    while it<Max_iteration
        it=it+1;
        f=20.*exp(-(12.*(it/Max_iteration))); % (Eq.17.6) 
        Xavg = mean(X);               % Determine the Average of Solutions
        SF=2.*(0.5-rand(1,pop)).*f;    % Determine the Adaptive Factor (Eq.17.5)
        
        for i=1:pop
                [~,ind_l] = min(Cost);
                lBest = X(ind_l,:);   
                
                [A,B,C]=RndX(pop,i);   % Determine Three Random Indices of Solutions
                [~,ind1] = min(Cost([A B C]));
                
                % Determine Delta X (Eqs. 11.1 to 11.3)
                gama = rand.*(X(i,:)-rand(1,dim).*(ub-lb)).*exp(-4*it/Max_iteration);  
                Stp=rand(1,dim).*((Best_pos-rand.*Xavg)+gama);
                DelX = 2*rand(1,dim).*(abs(Stp));
                
                % Determine Xb and Xw for using in Runge Kutta method
                if Cost(i)<Cost(ind1)                
                    Xb = X(i,:);
                    Xw = X(ind1,:);
                else
                    Xb = X(ind1,:);
                    Xw = X(i,:);
                end
    
                SM = RungeKutta(Xb,Xw,DelX);   % Search Mechanism (SM) of RUN based on Runge Kutta Method
                            
                L=rand(1,dim)<0.5;
                Xc = L.*X(i,:)+(1-L).*X(A,:);  % (Eq. 17.3)
                Xm = L.*Best_pos+(1-L).*lBest;   % (Eq. 17.4)
                  
                vec=[1,-1];
                flag = floor(2*rand(1,dim)+1);
                r=vec(flag);                   % An Interger number 
                
                g = 2*rand;
                mu = 0.5+.1*randn(1,dim);
                
                % Determine New Solution Based on Runge Kutta Method (Eq.18) 
                if rand<0.5
                    Xnew = (Xc+r.*SF(i).*g.*Xc) + SF(i).*(SM) + mu.*(Xm-Xc);
                else
                    Xnew = (Xm+r.*SF(i).*g.*Xm) + SF(i).*(SM)+ mu.*(X(A,:)-X(B,:));
                end  
                
            % Check if solutions go outside the search space and bring them back
            FU=Xnew>ub;FL=Xnew<lb;Xnew=(Xnew.*(~(FU+FL)))+ub.*FU+lb.*FL; 
            CostNew=fobj(Xnew);
            
            if CostNew<Cost(i)
                X(i,:)=Xnew;
                Cost(i)=CostNew;
            end
    %% Enhanced solution quality (ESQ)  (Eq. 19)      
            if rand<0.5
                EXP=exp(-5*rand*it/Max_iteration);
                r = floor(Unifrnd(-1,2,1,1));
    
                u=2*rand(1,dim); 
                w=Unifrnd(0,2,1,dim).*EXP;               %(Eq.19-1)
                
                [A,B,C]=RndX(pop,i);
                Xavg=(X(A,:)+X(B,:)+X(C,:))/3;           %(Eq.19-2)         
                
                beta=rand(1,dim);
                Xnew1 = beta.*(Best_pos)+(1-beta).*(Xavg); %(Eq.19-3)
                
                for j=1:dim
                    if w(j)<1 
                        Xnew2(j) = Xnew1(j)+r*w(j)*abs((Xnew1(j)-Xavg(j))+randn);
                    else
                        Xnew2(j) = (Xnew1(j)-Xavg(j))+r*w(j)*abs((u(j).*Xnew1(j)-Xavg(j))+randn);
                    end
                end
                
                FU=Xnew2>ub;FL=Xnew2<lb;Xnew2=(Xnew2.*(~
                    if rand<w(randi(dim)) 
                        SM = RungeKutta(X(i,:),Xnew2,DelX);
                        Xnew = (Xnew2-rand.*Xnew2)+ SF(i)*(SM+(2*rand(1,dim).*Best_pos-Xnew2));  % (Eq. 20)
                        
                        FU=Xnew>ub;FL=Xnew<lb;Xnew=(Xnew.*(~(FU+FL)))+ub.*FU+lb.*FL;
                        CostNew=fobj(Xnew);
                        
                        if CostNew<Cost(i)
                            X(i,:)=Xnew;
                            Cost(i)=CostNew;
                        end
                    end
                end
            end
    % End of ESQ         
    %% Determine the Best Solution
            if Cost(i)<Best_score
                Best_pos=X(i,:);
                Best_score=Cost(i);
            end
    
        end
    % Save Best Solution at each iteration    
    curve(it) = Best_score;
    disp(['it : ' num2str(it) ', Best Cost = ' num2str(curve(it) )]);
    
    end
    
    end
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111

    参考资料

    [1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
    [2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

  • 相关阅读:
    SpringBoot+Vue+token实现(表单+图片)上传、图片地址保存到数据库。上传图片保存位置自己定义、图片可以在前端回显(一))
    劳动工资电子台账操作流程
    防火墙 iptables
    Nautilus Chain全球行分享会,上海站圆满举办
    华为---RSTP(二)---RSTP基本配置示例
    博客系统项目
    Git:代码回溯,分布式版本控制,团队协同开发,远程备份
    【软考:系统集成项目管理】之 项目质量管理
    答疑 | 分布式和微服务的区别?
    第二十二章 : Docker 部署 MySQL8
  • 原文地址:https://blog.csdn.net/kjm13182345320/article/details/133282916