已知向量函数
y
→
=
f
→
(
x
→
)
\overrightarrow y=\overrightarrow {f}(\overrightarrow x)
y=f(x)与向量
x
→
=
[
x
1
x
2
⋮
x
m
]
m
×
1
\overrightarrow x=\begin{bmatrix} x_{1}\\ x_{2}\\ \vdots \\ x_{m} \end{bmatrix}_{m\times 1}
x=x1x2⋮xmm×1
当
y
→
=
a
→
\overrightarrow y=\overrightarrow a
y=a,且
a
→
\overrightarrow a
a不是
x
→
\overrightarrow x
x的函数(即
a
→
\overrightarrow a
a中没有分量和
x
→
\overrightarrow x
x相关)时,则有:
∂
y
→
∂
x
→
=
[
∂
f
(
x
→
)
∂
x
1
∂
f
(
x
→
)
∂
x
2
⋮
∂
f
(
x
→
)
∂
x
m
]
=
[
0
0
⋮
0
]
=
0
→
\frac{\partial {\overrightarrow y}}{\partial\overrightarrow x}= \begin{bmatrix} \frac{\partial {{f}(\overrightarrow x)}}{\partial {x_{1}}}\\ \frac{\partial {{f}(\overrightarrow x)}}{\partial {x_{2}}}\\ \vdots \\ \frac{\partial {{f}(\overrightarrow x)}}{\partial {x_{m}}} \end{bmatrix}=\begin{bmatrix} 0\\ 0\\ \vdots \\ 0 \end{bmatrix}=\overrightarrow 0
∂x∂y=∂x1∂f(x)∂x2∂f(x)⋮∂xm∂f(x)=00⋮0=0
当
y
→
=
x
→
\overrightarrow y=\overrightarrow x
y=x时,即
y
→
=
[
f
1
(
x
→
)
f
2
(
x
→
)
⋮
f
m
(
x
→
)
]
=
[
x
1
x
2
⋮
x
m
]
\overrightarrow y=\begin{bmatrix} f_{1}(\overrightarrow x) \\ f_{2}(\overrightarrow x) \\ \vdots \\ f_{m}(\overrightarrow x) \end{bmatrix}=\begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{bmatrix}
y=f1(x)f2(x)⋮fm(x)=x1x2⋮xm,则有:
∂
y
→
∂
x
→
=
[
∂
f
(
x
→
)
∂
x
1
∂
f
(
x
→
)
∂
x
2
⋮
∂
f
(
x
→
)
∂
x
m
]
=
[
∂
f
1
(
x
→
)
∂
x
1
∂
f
2
(
x
→
)
∂
x
1
…
∂
f
n
(
x
→
)
∂
x
1
∂
f
1
(
x
→
)
∂
x
2
∂
f
2
(
x
→
)
∂
x
2
…
∂
f
n
(
x
→
)
∂
x
2
⋮
⋮
⋱
⋮
∂
f
1
(
x
→
)
∂
x
m
∂
f
2
(
x
→
)
∂
x
m
…
∂
f
n
(
x
→
)
∂
x
m
]
m
×
n
=
[
1
0
…
0
0
1
…
0
⋮
⋮
⋱
⋮
0
0
…
1
]
=
I
或
E
(单位矩阵的两种不同记号,含义一致)
\frac{\partial {\overrightarrow y}}{\partial\overrightarrow x}= \begin{bmatrix} \frac{\partial {{f}(\overrightarrow x)}}{\partial {x_{1}}}\\ \frac{\partial {{f}(\overrightarrow x)}}{\partial {x_{2}}}\\ \vdots \\ \frac{\partial {{f}(\overrightarrow x)}}{\partial {x_{m}}} \end{bmatrix}=\begin{bmatrix} \frac{\partial {{f_{1}}(\overrightarrow x)}}{\partial {x_{1}}}& \frac{\partial {{f_{2}}(\overrightarrow x)}}{\partial {x_{1}}} & \dots &\frac{\partial {{f_{n}}(\overrightarrow x)}}{\partial {x_{1}}} \\ \frac{\partial {{f_{1}}(\overrightarrow x)}}{\partial {x_{2}}}& \frac{\partial {{f_{2}}(\overrightarrow x)}}{\partial {x_{2}}} & \dots &\frac{\partial {{f_{n}}(\overrightarrow x)}}{\partial {x_{2}}} \\ \vdots & \vdots & \ddots &\vdots \\ \frac{\partial {{f_{1}}(\overrightarrow x)}}{\partial {x_{m}}}& \frac{\partial {{f_{2}}(\overrightarrow x)}}{\partial {x_{m}}} & \dots &\frac{\partial {{f_{n}}(\overrightarrow x)}}{\partial {x_{m}}} \end{bmatrix}_{m\times n}=\begin{bmatrix} 1& 0&\dots &0 \\ 0& 1& \dots &0 \\ \vdots & \vdots & \ddots &\vdots \\ 0 & 0& \dots &1 \end{bmatrix}=\bm{I}或\bm{E}(单位矩阵的两种不同记号,含义一致)
∂x∂y=∂x1∂f(x)∂x2∂f(x)⋮∂xm∂f(x)=∂x1∂f1(x)∂x2∂f1(x)⋮∂xm∂f1(x)∂x1∂f2(x)∂x2∂f2(x)⋮∂xm∂f2(x)……⋱…∂x1∂fn(x)∂x2∂fn(x)⋮∂xm∂fn(x)m×n=10⋮001⋮0……⋱…00⋮1=I或E(单位矩阵的两种不同记号,含义一致)
当
y
→
=
A
x
→
\overrightarrow y=\bm{A}\overrightarrow {x}
y=Ax,
A
=
[
a
11
a
12
⋯
a
1
m
a
21
a
22
⋯
a
2
m
⋮
⋮
⋱
⋮
a
m
1
a
m
2
⋯
a
m
m
]
\bm{A}=\begin{bmatrix} a_{11}&a_{12} & \cdots & a_{1m}\\ a_{21}&a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots &\vdots \\ a_{m1}&a_{m2} & \cdots & a_{mm} \end{bmatrix}
A=a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1ma2m⋮amm,则有:
∂
y
→
∂
x
→
=
∂
A
x
→
∂
x
→
=
A
T
(按分母布局)
\frac{\partial {\overrightarrow y}}{\partial\overrightarrow x}=\frac{\partial {\bm{A}\overrightarrow x}}{\partial {\overrightarrow x}} =\bm{A}^{T}(按分母布局)
∂x∂y=∂x∂Ax=AT(按分母布局)
∂
y
→
∂
x
→
=
∂
A
x
→
∂
x
→
=
A
(按分子布局)
\frac{\partial {\overrightarrow y}}{\partial\overrightarrow x}=\frac{\partial {\bm{A}\overrightarrow x}}{\partial {\overrightarrow x}} =\bm{A}(按分子布局)
∂x∂y=∂x∂Ax=A(按分子布局) (证明见本节第三篇)
当
y
→
=
x
→
T
A
\overrightarrow y=\overrightarrow {x}^{T}\bm{A}
y=xTA,
A
=
[
a
11
a
12
⋯
a
1
m
a
21
a
22
⋯
a
2
m
⋮
⋮
⋱
⋮
a
m
1
a
m
2
⋯
a
m
m
]
\bm{A}=\begin{bmatrix} a_{11}&a_{12} & \cdots & a_{1m}\\ a_{21}&a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots &\vdots \\ a_{m1}&a_{m2} & \cdots & a_{mm} \end{bmatrix}
A=a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1ma2m⋮amm,
y
→
=
x
→
T
A
=
[
x
1
,
x
2
,
…
,
x
m
]
⋅
[
a
11
a
12
⋯
a
1
m
a
21
a
22
⋯
a
2
m
⋮
⋮
⋱
⋮
a
m
1
a
m
2
⋯
a
m
m
]
=
[
a
11
x
1
+
a
21
x
2
+
⋯
+
a
m
1
x
m
,
a
12
x
1
+
a
22
x
2
+
⋯
+
a
m
2
x
m
,
…
,
a
1
m
x
1
+
a
2
m
x
2
+
⋯
+
a
m
m
x
m
]
\overrightarrow y=\overrightarrow {x}^{T}\bm{A}=\begin{bmatrix} x_{1}, & x_{2} ,& \dots ,& x_{m} \end{bmatrix}\cdot \begin{bmatrix} a_{11}&a_{12} & \cdots & a_{1m}\\ a_{21}&a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots &\vdots \\ a_{m1}&a_{m2} & \cdots & a_{mm} \end{bmatrix}=\begin{bmatrix} a_{11}x_{1}+a_{21}x_{2}+\dots +a_{m1}x_{m}, & a_{12}x_{1}+a_{22}x_{2}+\dots +a_{m2}x_{m} ,& \dots ,& a_{1m}x_{1}+a_{2m}x_{2}+\dots +a_{mm}x_{m} \end{bmatrix}
y=xTA=[x1,x2,…,xm]⋅a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1ma2m⋮amm=[a11x1+a21x2+⋯+am1xm,a12x1+a22x2+⋯+am2xm,…,a1mx1+a2mx2+⋯+ammxm],所以按一一对应法则只能理解成(这里行向量列向量混用了,没办法)
y
→
=
[
f
1
(
x
→
)
f
2
(
x
→
)
⋮
f
m
(
x
→
)
]
=
[
a
11
x
1
+
a
21
x
2
+
⋯
+
a
m
1
x
m
a
12
x
1
+
a
22
x
2
+
⋯
+
a
m
2
x
m
⋮
a
1
m
x
1
+
a
2
m
x
2
+
⋯
+
a
m
m
x
m
]
\overrightarrow y=\begin{bmatrix} f_{1}(\overrightarrow x) \\ f_{2}(\overrightarrow x) \\ \vdots \\ f_{m}(\overrightarrow x) \end{bmatrix}=\begin{bmatrix} a_{11}x_{1}+a_{21}x_{2}+\dots +a_{m1}x_{m}\\ a_{12}x_{1}+a_{22}x_{2}+\dots +a_{m2}x_{m}\\ \vdots \\ a_{1m}x_{1}+a_{2m}x_{2}+\dots +a_{mm}x_{m} \end{bmatrix}
y=f1(x)f2(x)⋮fm(x)=a11x1+a21x2+⋯+am1xma12x1+a22x2+⋯+am2xm⋮a1mx1+a2mx2+⋯+ammxm,则有:
∂
y
→
∂
x
→
=
∂
x
→
T
A
∂
x
→
=
[
∂
f
1
(
x
→
)
∂
x
1
∂
f
2
(
x
→
)
∂
x
1
…
∂
f
n
(
x
→
)
∂
x
1
∂
f
1
(
x
→
)
∂
x
2
∂
f
2
(
x
→
)
∂
x
2
…
∂
f
n
(
x
→
)
∂
x
2
⋮
⋮
⋱
⋮
∂
f
1
(
x
→
)
∂
x
m
∂
f
2
(
x
→
)
∂
x
m
…
∂
f
n
(
x
→
)
∂
x
m
]
=
[
a
11
a
21
…
a
m
1
a
12
a
22
…
a
m
2
⋮
⋮
⋱
⋮
a
1
m
a
2
m
…
a
m
m
]
=
A
T
\frac{\partial {\overrightarrow y}}{\partial\overrightarrow x}=\frac{\partial {\overrightarrow {x}^{T}\bm{A}}}{\partial {\overrightarrow x}} =\begin{bmatrix} \frac{\partial {{f_{1}}(\overrightarrow x)}}{\partial {x_{1}}}& \frac{\partial {{f_{2}}(\overrightarrow x)}}{\partial {x_{1}}} & \dots &\frac{\partial {{f_{n}}(\overrightarrow x)}}{\partial {x_{1}}} \\ \frac{\partial {{f_{1}}(\overrightarrow x)}}{\partial {x_{2}}}& \frac{\partial {{f_{2}}(\overrightarrow x)}}{\partial {x_{2}}} & \dots &\frac{\partial {{f_{n}}(\overrightarrow x)}}{\partial {x_{2}}} \\ \vdots & \vdots & \ddots &\vdots \\ \frac{\partial {{f_{1}}(\overrightarrow x)}}{\partial {x_{m}}}& \frac{\partial {{f_{2}}(\overrightarrow x)}}{\partial {x_{m}}} & \dots &\frac{\partial {{f_{n}}(\overrightarrow x)}}{\partial {x_{m}}} \end{bmatrix}=\begin{bmatrix} a_{11}& a_{21}&\dots &a_{m1} \\ a_{12}& a_{22}& \dots &a_{m2} \\ \vdots & \vdots & \ddots &\vdots \\ a_{1m}& a_{2m}& \dots &a_{mm} \end{bmatrix}=\bm{A}^{T}
∂x∂y=∂x∂xTA=∂x1∂f1(x)∂x2∂f1(x)⋮∂xm∂f1(x)∂x1∂f2(x)∂x2∂f2(x)⋮∂xm∂f2(x)……⋱…∂x1∂fn(x)∂x2∂fn(x)⋮∂xm∂fn(x)=a11a12⋮a1ma21a22⋮a2m……⋱…am1am2⋮amm=AT
当
y
→
=
a
u
→
\overrightarrow y=a\overrightarrow u
y=au,
a
a
a是任意常数,
u
→
=
u
→
(
x
→
)
\overrightarrow u=\overrightarrow {u}(\overrightarrow x)
u=u(x),则有:
∂
y
→
∂
x
→
=
a
∂
u
→
∂
x
→
\frac{\partial {\overrightarrow y}}{\partial\overrightarrow x}=a\frac{\partial {\overrightarrow u}}{\partial\overrightarrow x}
∂x∂y=a∂x∂u
当
y
→
=
A
u
→
\overrightarrow y=\bm{A}\overrightarrow u
y=Au,
u
→
=
u
→
(
x
→
)
\overrightarrow u=\overrightarrow {u}(\overrightarrow x)
u=u(x),
A
\bm{A}
A中的元素与
x
→
\overrightarrow x
x中的元素无关系,则有:
∂
y
→
∂
x
→
=
A
∂
u
→
∂
x
→
\frac{\partial {\overrightarrow y}}{\partial\overrightarrow x}=\bm{A}\frac{\partial {\overrightarrow u}}{\partial\overrightarrow x}
∂x∂y=A∂x∂u
当
y
→
=
u
→
+
v
→
\overrightarrow y=\overrightarrow u+\overrightarrow v
y=u+v时,
u
→
=
u
→
(
x
→
)
,
v
→
=
v
→
(
x
→
)
\overrightarrow u = \overrightarrow {u}(\overrightarrow x),\overrightarrow v = \overrightarrow {v}(\overrightarrow x)
u=u(x),v=v(x),则有:
∂
y
→
∂
x
→
=
∂
u
→
∂
x
→
+
∂
v
→
∂
x
→
\frac{\partial {\overrightarrow y}}{\partial\overrightarrow x}=\frac{\partial {\overrightarrow u}}{\partial\overrightarrow x}+\frac{\partial {\overrightarrow v}}{\partial\overrightarrow x}
∂x∂y=∂x∂u+∂x∂v