遍历feature_main主结构的next_arc单向链表,按照顺序为每个ARC注册结构分配索引(feature_arc_index),如果注册ARC的时候为成员arc_index_ptr附了值,将ARC索引写入此值。
将arc_name作为key,areg注册结构为value,写入arc_index_by_name的哈希中,方便之后查找。计算ARC中开始节点的数量,递增ARC索引,遍历下一个ARC注册结构。
vnet_feature_init (vlib_main_t * vm)
{
vnet_feature_main_t *fm = &feature_main;
vnet_feature_registration_t *freg;
vnet_feature_arc_registration_t *areg;
vnet_feature_constraint_registration_t *creg;
u32 arc_index = 0;
fm->arc_index_by_name = hash_create_string (0, sizeof (uword));
areg = fm->next_arc;
while (areg) {
char *s;
int i = 0;
areg->feature_arc_index = arc_index;
if (areg->arc_index_ptr)
*areg->arc_index_ptr = arc_index;
hash_set_mem (fm->arc_index_by_name, areg->arc_name, pointer_to_uword (areg));
while ((s = areg->start_nodes[i]))
i++;
areg->n_start_nodes = i;
areg = areg->next;
arc_index++;
}
按照最大的ARC索引值,分配以下的向量。
vec_validate (fm->next_feature_by_arc, arc_index - 1);
vec_validate (fm->feature_nodes, arc_index - 1);
vec_validate (fm->feature_config_mains, arc_index - 1);
vec_validate (fm->next_feature_by_name, arc_index - 1);
vec_validate (fm->sw_if_index_has_features, arc_index - 1);
vec_validate (fm->feature_count_by_sw_if_index, arc_index - 1);
vec_validate (fm->next_constraint_by_arc, arc_index - 1);
遍历全局features单向链表next_feature,根据feature中的ARC名称,在哈希arc_index_by_name中找到ARC注册结构,进而找到ARC的feature链表头next_feature_by_arc[arc_index],为索引arc_index的ARC创建feature链表。
遍历结束之后,为每个ARC创建了feature链表next_feature_by_arc[arc_index]。
freg = fm->next_feature;
while (freg) {
vnet_feature_registration_t *next;
uword *p = hash_get_mem (fm->arc_index_by_name, freg->arc_name);
if (p == 0) {
clib_warning ("Unknown feature arc '%s'", freg->arc_name);
os_exit (1);
}
areg = uword_to_pointer (p[0], vnet_feature_arc_registration_t *);
arc_index = areg->feature_arc_index;
next = freg->next;
freg->next_in_arc = fm->next_feature_by_arc[arc_index];
fm->next_feature_by_arc[arc_index] = freg;
freg = next;
}
遍历全局的next_constraint链表,最终为每个ARC创建单独的constraint链表,链表头部为next_constraint_by_arc[arc_index],最后添加的位于链表的头部。
/* Move bulk constraints to the constraint by arc lists */
creg = fm->next_constraint;
while (creg) {
vnet_feature_constraint_registration_t *next;
uword *p = hash_get_mem (fm->arc_index_by_name, creg->arc_name);
if (p == 0) {
clib_warning ("Unknown feature arc '%s'", creg->arc_name);
os_exit (1);
}
areg = uword_to_pointer (p[0], vnet_feature_arc_registration_t *);
arc_index = areg->feature_arc_index;
next = creg->next;
creg->next_in_arc = fm->next_constraint_by_arc[arc_index];
fm->next_constraint_by_arc[arc_index] = creg;
creg = next;
}
最后,再次遍历next_arc链表,对于每个ARC集合,检测其中的features是否满足定义的次序,如果last_in_arc不等于排序之后的最后一个feature,表明发生错误。
areg = fm->next_arc;
while (areg)
{
vnet_feature_config_main_t *cm;
vnet_config_main_t *vcm;
char **features_in_order, *last_feature;
arc_index = areg->feature_arc_index;
cm = &fm->feature_config_mains[arc_index];
vcm = &cm->config_main;
if ((error = vnet_feature_arc_init (vm, vcm, areg->start_nodes, areg->n_start_nodes,
areg->last_in_arc, fm->next_feature_by_arc[arc_index],
fm->next_constraint_by_arc[arc_index], &fm->feature_nodes[arc_index]))) {
os_exit (1);
}
features_in_order = fm->feature_nodes[arc_index];
/* If specified, verify that the last node in the arc is actually last */
if (areg->last_in_arc && vec_len (features_in_order) > 0)
{
last_feature = features_in_order[vec_len (features_in_order) - 1];
if (strncmp (areg->last_in_arc, last_feature, strlen (areg->last_in_arc)))
clib_warning("WARNING: %s arc: last node is %s, but expected %s!",
areg->arc_name, last_feature, areg->last_in_arc);
}
为每个ARC的所有feature初始化next_feature_by_name[arc_index]哈希结构,之后可通过feature名称找到feature注册结构。
fm->next_feature_by_name[arc_index] = hash_create_string (0, sizeof (uword));
freg = fm->next_feature_by_arc[arc_index];
while (freg) {
hash_set_mem (fm->next_feature_by_name[arc_index], freg->node_name, pointer_to_uword (freg));
freg = freg->next_in_arc;
}
areg = areg->next;
}
命令:show features [verbose] 用于显示VPP系统中的注册的ARCs以及每个ARC包含的features集合。所有的信息都保存在全局结构feature_main中,其成员next_arc为保存了ARC注册信息的单向链表,以下函数遍历此链表。
static clib_error_t *
show_features_command_fn (vlib_main_t * vm,
unformat_input_t * input, vlib_cli_command_t * cmd)
{
vnet_feature_main_t *fm = &feature_main;
vnet_feature_arc_registration_t *areg;
vnet_feature_registration_t *freg;
vnet_feature_registration_t *feature_regs = 0;
areg = fm->next_arc;
while (areg) {
if (verbose)
vlib_cli_output (vm, "[%2d] %s:", areg->feature_arc_index, areg->arc_name);
else
vlib_cli_output (vm, "%s:", areg->arc_name);
ARC中的features链表保存在feature_main的成员next_feature_by_arc中,单向链表,next_in_arc指向下一个feature注册结构。遍历过程中将所有的feature注册结构保存到feature_regs向量中,按照feature索引值由小到大进行排序之后,输出feature索引和名称信息。
freg = fm->next_feature_by_arc[areg->feature_arc_index];
while (freg) {
vec_add1 (feature_regs, freg[0]);
freg = freg->next_in_arc;
}
vec_sort_with_function (feature_regs, feature_cmp);
vec_foreach (freg, feature_regs) {
if (verbose)
vlib_cli_output (vm, " [%2d]: %s\n", freg->feature_index, freg->node_name);
else
vlib_cli_output (vm, " %s\n", freg->node_name);
}
vec_reset_length (feature_regs);
areg = areg->next;
}
如下显示:
vpp# show features verbose
Available feature paths
[ 0] nsh-eth-output:
[ 0]: interface-output
[ 1]: error-drop
[ 1] arp:
[ 0]: vrrp4-arp-input
[ 1]: linux-cp-arp-phy
[ 2]: linux-cp-arp-host
[ 3]: arping-input
[ 4]: arp-reply
[ 5]: arp-proxy
[ 6]: arp-disabled
[ 7]: error-drop
[ 2] nsh-output:
[ 0]: error-drop
[ 3] mpls-input:
[ 0]: vlan-mpls-qos-record
[ 1]: mpls-qos-record
[ 2]: mpls-not-enabled
[ 3]: mpls-lookup
函数vnet_interface_features_show显示在指定接口上激活的feature集合,这里也是由遍历feature_main结构的成员next_arc开头的单链表开始。
void
vnet_interface_features_show (vlib_main_t * vm, u32 sw_if_index, int verbose)
{
vnet_feature_main_t *fm = &feature_main;
vnet_feature_config_main_t *cm = fm->feature_config_mains;
vnet_feature_arc_registration_t *areg;
vnet_config_main_t *vcm;
vnet_config_t *cfg;
vnet_config_feature_t *feat;
vlib_node_t *n;
vlib_cli_output (vm, "Feature paths configured on %U...",
format_vnet_sw_if_index_name, vnet_get_main (), sw_if_index);
areg = fm->next_arc;
根据ARC索引找到对应的配置结构vcm,如果接口sw_if_index完全没有激活此ARC,显示"none configured"。否则,检查此接口在此ARC上激活了哪些features。
while (areg) {
feature_arc = areg->feature_arc_index;
vcm = &(cm[feature_arc].config_main);
vlib_cli_output (vm, "\n%s:", areg->arc_name);
areg = areg->next;
if (!vnet_have_features (feature_arc, sw_if_index)) {
vlib_cli_output (vm, " none configured");
continue;
}
先根据sw_if_index接口索引在向量config_index_by_sw_if_index中找到ARC配置索引(current_config_index),再根据配置索引在向量config_pool_index_by_user_index中找到pool索引,最终,在config_pool中取得相应配置cfg。
遍历cfg结构向量成员features,根据其中的节点索引node_index,找到feature的节点结构。打印输出feature索引和节点名称。
current_config_index =
vec_elt (cm[feature_arc].config_index_by_sw_if_index, sw_if_index);
cfg_index =
vec_elt (vcm->config_pool_index_by_user_index, current_config_index);
cfg = pool_elt_at_index (vcm->config_pool, cfg_index);
for (i = 0; i < vec_len (cfg->features); i++) {
feat = cfg->features + i;
node_index = feat->node_index;
n = vlib_get_node (vm, node_index);
if (verbose)
vlib_cli_output (vm, " [%2d] %v", feat->feature_index, n->name);
else
vlib_cli_output (vm, " %v", n->name);
}
ARC的最后一个节点索引保存在end_node_indices_by_user_index的current_config_index索引位置,vlib_get_node根据最后节点索引找到节点结构,打印其名称。
if (verbose) {
n = vlib_get_node (vm, vcm->end_node_indices_by_user_index[current_config_index]);
vlib_cli_output (vm, " [end] %v", n->name);
}
如下显示接口features配置:
vpp# show interface features eth0
Feature paths configured on eth0...
nsh-eth-output:
none configured
arp:
linux-cp-arp-phy
feature开启关闭操作需要指定ARC和Feature的名称,以及要开启的接口索引。如下函数,根据ARC和Feature名称找到ARC索引和feature索引。
int
vnet_feature_enable_disable (const char *arc_name, const char *node_name,
u32 sw_if_index, int enable_disable,
void *feature_config, u32 n_feature_config_bytes)
{
u32 feature_index;
u8 arc_index;
arc_index = vnet_get_feature_arc_index (arc_name);
if (arc_index == (u8) ~ 0)
return VNET_API_ERROR_INVALID_VALUE;
feature_index = vnet_get_feature_index (arc_index, node_name);
return vnet_feature_enable_disable_with_index (arc_index, feature_index,
sw_if_index, enable_disable,
feature_config, n_feature_config_bytes);
在feature_main结构中,根据ARC名称,在哈希arc_index_by_name找到ARC的注册结构,其中保存着ARC的索引feature_arc_index。
vnet_get_feature_arc_index (const char *s)
{
vnet_feature_main_t *fm = &feature_main;
vnet_feature_arc_registration_t *reg;
uword *p;
p = hash_get_mem (fm->arc_index_by_name, s);
if (p == 0)
return ~0;
reg = uword_to_pointer (p[0], vnet_feature_arc_registration_t *);
return reg->feature_arc_index;
在feature_main主结构中,根据ARC索引,和feature名称,在哈希next_feature_by_name[arc]中找到feature的注册结构,其中保存着feature的索引feature_index。
vnet_get_feature_index (u8 arc, const char *s)
{
vnet_feature_main_t *fm = &feature_main;
vnet_feature_registration_t *reg;
uword *p;
if (s == 0) return ~0;
p = hash_get_mem (fm->next_feature_by_name[arc], s);
if (p == 0)
return ~0;
reg = uword_to_pointer (p[0], vnet_feature_registration_t *);
return reg->feature_index;
根据ARC索引找到对应配置结构cm,再根据接口索引sw_if_index在config_index_by_sw_if_index找到配置池索引ci,检查一下接口当前开启的feature数量,如果为零,并且当前为disable操作,直接返回,不需要disable了。
vnet_feature_enable_disable_with_index (u8 arc_index, u32 feature_index,
u32 sw_if_index, int enable_disable,
void *feature_config, u32 n_feature_config_bytes)
{
vnet_feature_main_t *fm = &feature_main;
vnet_feature_config_main_t *cm;
cm = &fm->feature_config_mains[arc_index];
vec_validate_init_empty (cm->config_index_by_sw_if_index, sw_if_index, ~0);
ci = cm->config_index_by_sw_if_index[sw_if_index];
vec_validate (fm->feature_count_by_sw_if_index[arc_index], sw_if_index);
feature_count = fm->feature_count_by_sw_if_index[arc_index][sw_if_index];
if (!enable_disable && feature_count < 1)
return 0;
调用函数vnet_config_add_feature/vnet_config_del_feature添加或者删除feature。将返回的配置池索引ci保存到接口对应的config_index_by_sw_if_index中。递增接口的feature数量。
ARC对应的向量sw_if_index_has_features[arc_index]中保存接口是否开启有feature。
ci = (enable_disable
? vnet_config_add_feature
: vnet_config_del_feature)
(vlib_get_main (), &cm->config_main, ci, feature_index, feature_config, n_feature_config_bytes);
if (ci == ~0)
return 0;
cm->config_index_by_sw_if_index[sw_if_index] = ci;
/* update feature count */
enable_disable = (enable_disable > 0);
feature_count += enable_disable ? 1 : -1;
ASSERT (feature_count >= 0);
fm->sw_if_index_has_features[arc_index] =
clib_bitmap_set (fm->sw_if_index_has_features[arc_index], sw_if_index, (feature_count > 0));
fm->feature_count_by_sw_if_index[arc_index][sw_if_index] = feature_count;
vnet_feature_reg_invoke (sw_if_index, arc_index, (feature_count > 0));
如下增加feature函数,如果config_string_heap_index为有效值,据此获得之前添加的vnet_config_t结构old(这里将p进行了减一操作,之后会再次看着这个值进行了加一保存),将其中的features复制一份。
vnet_config_add_feature (vlib_main_t * vm,
vnet_config_main_t * cm, u32 config_string_heap_index,
u32 feature_index, void *feature_config, u32 n_feature_config_bytes)
{
vnet_config_t *old, *new;
vnet_config_feature_t *new_features, *f;
u32 n_feature_config_u32s, end_node_index;
u32 node_index = vec_elt (cm->node_index_by_feature_index, feature_index);
if (config_string_heap_index == ~0) {
old = 0;
new_features = 0;
end_node_index = cm->default_end_node_index;
} else {
u32 *p = vnet_get_config_heap (cm, config_string_heap_index);
old = pool_elt_at_index (cm->config_pool, p[-1]);
new_features = old->features;
end_node_index = cm->end_node_indices_by_user_index[config_string_heap_index];
if (new_features)
new_features = duplicate_feature_vector (new_features);
}
分配一个新的feature结构vnet_config_feature_t,将要添加的feature索引和节点索引赋值到新feature结构中。如果指定了配置字节,保存到新feature结构中。
vec_add2 (new_features, f, 1);
f->feature_index = feature_index;
f->node_index = node_index;
if (n_feature_config_bytes) {
n_feature_config_u32s = round_pow2 (n_feature_config_bytes, sizeof (f->feature_config[0])) / sizeof (f->feature_config[0]);
vec_validate (f->feature_config, n_feature_config_u32s - 1);
clib_memcpy_fast (f->feature_config, feature_config, n_feature_config_bytes);
}
如果new_features向量元素大于1,进行排序。释放旧的vnet_config结构。函数find_config_with_features分配一个新的vnet_config结构new。
/* Sort (prioritize) features. */
if (vec_len (new_features) > 1)
vec_sort_with_function (new_features, feature_cmp);
if (old)
remove_reference (cm, old);
new = find_config_with_features (vm, cm, new_features, end_node_index);
new->reference_count += 1;
分配config_pool_index_by_user_index索引,将配置池索引进行保存。返回配置池索引值(进行了加一操作)。
/* User gets pointer to config string first element
* (which defines the pool index this config string comes from).
*/
vec_validate (cm->config_pool_index_by_user_index,
new->config_string_heap_index + 1);
cm->config_pool_index_by_user_index[new->config_string_heap_index + 1]
= new - cm->config_pool;
return new->config_string_heap_index + 1;