
链接: [矩阵转置置
def solve():
n, = RI()
g = []
for _ in range(n):
g.append(RILST())
for i,row in enumerate(g):
g[i] = row[::-1]
for j in range(n):
l,r = 0,n-1
while l < r:
g[l][j],g[r][j] = g[r][j],g[l][j]
l += 1
r -= 1
for row in g:
print(*row)
链接: 小红买基金

def solve():
n, x, y = RI()
p = 0
for _ in range(n):
a, b = RI()
if a >= x and b <= y:
p += 1
print((pow(2, p, MOD) - 1) % MOD)
链接: 小红的密码修改

def solve():
s, = RS()
n = len(s)
up = low = dig = sp = 0
for c in s:
if c.isdigit():
dig += 1
elif c.islower():
low += 1
elif c.isupper():
up += 1
else:
sp += 1
ans = 0
for c in s:
if c.isdigit():
if dig == 1:
ans += 9
else:
ans += 9 + 26 + 26 + 4
elif c.islower():
if low == 1:
ans += 25
else:
ans += 10 + 25 + 26 + 4
elif c.isupper():
if up == 1:
ans += 25
else:
ans += 10 + 25 + 26 + 4
else:
if sp == 1:
ans += 3
else:
ans += 10 + 26 + 26 + 3
ans %= MOD
print(ans)
链接: 小红的转账设置方式

题目给出了n个点和m条无向边,要求调整为有向边,且使得所有点到1的最短路最短。问有几种方案。
def solve():
n, m = RI()
g = [[] for _ in range(n)]
for _ in range(m):
u, v = RI()
g[u - 1].append(v - 1)
g[v - 1].append(u - 1)
dis = [n] * n
dis[0] = 0
q = deque([0])
while q:
u = q.popleft()
d = dis[u] + 1
for v in g[u]:
if d < dis[v]:
dis[v] = d
q.append(v)
ans = 1
for u, es in enumerate(g): # 枚举每个点最短路
p = 0
for v in es:
if dis[v] + 1 == dis[u]: # u可以从v来
p += 1
elif dis[u] + 1 != dis[v] and u > v: # 如果v从u来,则这条边去v里再计算;否则这条边不在最短路上,可以任意方向,但注意只计算一次
ans = ans * 2 % MOD
if p > 1: # u有超过1条边来,那么只有全是反边的情况不可以
ans = ans * (pow(2, p, MOD) - 1) % MOD
print(sum(dis) % MOD, ans)
链接: 小红打boss

def solve():
n, = RI()
c = [] # 存所有分数
cnt = Counter() # 分别计数
for _ in range(n):
a, b = RS()
c.append(int(b))
cnt[a[0]] += 1
ans = sum(c)
c.sort(reverse=True)
ans += sum(c[:min(n // 2, n - max(cnt.values()))]) # 最多取一半;如果有一个太多,只能取不到一半
print(ans)