- # 训练循环
- def train(dataloader, model, loss_fn, optimizer):
- size = len(dataloader.dataset) # 训练集的大小
- num_batches = len(dataloader) # 批次数目
-
- train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
-
- for X, y in dataloader: # 获取图片及其标签
- X, y = X.to(device), y.to(device)
-
- # 计算预测误差
- pred = model(X) # 网络输出
- loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
-
- # 反向传播
- optimizer.zero_grad() # grad属性归零
- loss.backward() # 反向传播
- optimizer.step() # 每一步自动更新
-
- # 记录acc与loss
- train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
- train_loss += loss.item()
-
- train_acc /= size
- train_loss /= num_batches
-
- return train_acc, train_loss
-
- # 测试函数
- def test(dataloader, model, loss_fn):
- size = len(dataloader.dataset) # 测试集的大小
- num_batches = len(dataloader) # 批次数目,(size/batch_size,向上取整)
- test_loss, test_acc = 0, 0
-
- # 当不进行训练时,停止梯度更新,节省计算内存消耗
- with torch.no_grad():
- for imgs, target in dataloader:
- imgs, target = imgs.to(device), target.to(device)
-
- # 计算loss
- target_pred = model(imgs)
- loss = loss_fn(target_pred, target)
-
- test_loss += loss.item()
- test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
-
- test_acc /= size
- test_loss /= num_batches
-
- return test_acc, test_loss
-
- ''' 自定义设置动态学习率 '''
- def adjust_learning_rate(optimizer, epoch, start_lr):
- # 每 2 个epoch衰减到原来的 0.92
- lr = start_lr * (0.92 ** (epoch // 2))
- for param_group in optimizer.param_groups:
- param_group['lr'] = lr
-
- # 设置初始学习率
- learn_rate = 1e-4
- optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
-
- # 定义学习率调整函数
- lambda1 = lambda epoch: 0.92 ** (epoch // 4)
- scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) # 选定调整方法
-
- # 定义损失函数
- loss_fn = nn.CrossEntropyLoss()
-
- # 定义训练参数
- epochs = 40
- train_loss = []
- train_acc = []
- test_loss = []
- test_acc = []
-
- best_acc = 0 # 用于保存最佳模型的准确率
-
- for epoch in range(epochs):
- model.train()
- epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
- scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
-
- model.eval()
- epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
-
- # 保存最佳模型到best model
- if epoch_test_acc > best_acc:
- best_acc = epoch_test_acc
- best_model = copy.deepcopy(model)
-
- train_acc.append(epoch_train_acc)
- train_loss.append(epoch_train_loss)
- test_acc.append(epoch_test_acc)
- test_loss.append(epoch_test_loss)
-
- # 获取当前的学习率
- lr = optimizer.state_dict()['param_groups'][0]['lr']
-
- template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, lr:{:.2E}')
- print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))
-
- # 保存最佳模型到文件中
- PATH = './best_model.pth' # 保存的参数文件名
- torch.save(best_model.state_dict(), PATH)
-
- print('Done')
在非实时编译器中运行出现Python 脚本中使用多进程相关问题报错,问题通常发生在没有正确使用 if __name__ == '__main__':
块的情况下。为了解决这个问题,我将完整代码修改如下:
- import torch
- import torch.nn as nn
- import torchvision.transforms as transforms
- import torchvision
- from torchvision import transforms, datasets
- import os, PIL, random, pathlib, warnings
- import copy
-
- warnings.filterwarnings("ignore")
-
- def main():
- # 您的现有代码放在这里
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
-
- print(device)
-
- import os, PIL, random, pathlib
-
- data_dir = 'D:/P6/48-data/'
- data_dir = pathlib.Path(data_dir)
-
- data_path = list(data_dir.glob('*'))
- print(data_path)
- classname = [str(path).split("\\")[3] for path in data_path]
- print(classname)
-
- train_transforms = transforms.Compose([
- transforms.Resize([224, 224]),
- transforms.ToTensor(),
- transforms.Normalize(
- mean=[0.39354826, 0.41713402, 0.48036146],
- std=[0.25076334, 0.25809455, 0.28359835]
- )
- ])
-
- total_data = datasets.ImageFolder("D:/P6/48-data/", transform=train_transforms)
- print(total_data)
-
- print(total_data.class_to_idx)
-
- train_size = int(0.8 * len(total_data))
- test_size = len(total_data) - train_size
- train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
- print(train_dataset, test_dataset)
-
- batch_size = 32
- train_dl = torch.utils.data.DataLoader(train_dataset,
- batch_size=batch_size,
- shuffle=True,
- num_workers=1)
-
- test_dl = torch.utils.data.DataLoader(test_dataset,
- batch_size=batch_size,
- shuffle=True,
- num_workers=1)
-
- from torchvision.models import vgg16
-
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- print("Using {} device\n".format(device))
-
- ''' 调用官方的VGG-16模型 '''
- # 加载预训练模型,并且对模型进行微调
- model = vgg16(pretrained=True).to(device) # 加载预训练的vgg16模型
- for param in model.parameters():
- param.requires_grad = False # 冻结模型的参数,这样子在训练的时候只训练最后一层的参数
- # 修改classifier模块的第6层(即:(6): Linear(in_features=4096, out_features=2, bias=True))
- # 注意查看我们下方打印出来的模型
- model.classifier._modules['6'] = nn.Linear(4096, 17) # 修改vgg16模型中最后一层全连接层,输出目标类别个数
- model.to(device)
-
- print(model)
-
- # 训练循环
- def train(dataloader, model, loss_fn, optimizer):
- size = len(dataloader.dataset) # 训练集的大小
- num_batches = len(dataloader) # 批次数目
-
- train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
-
- for X, y in dataloader: # 获取图片及其标签
- X, y = X.to(device), y.to(device)
-
- # 计算预测误差
- pred = model(X) # 网络输出
- loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
-
- # 反向传播
- optimizer.zero_grad() # grad属性归零
- loss.backward() # 反向传播
- optimizer.step() # 每一步自动更新
-
- # 记录acc与loss
- train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
- train_loss += loss.item()
-
- train_acc /= size
- train_loss /= num_batches
-
- return train_acc, train_loss
-
- # 测试函数
- def test(dataloader, model, loss_fn):
- size = len(dataloader.dataset) # 测试集的大小
- num_batches = len(dataloader) # 批次数目,(size/batch_size,向上取整)
- test_loss, test_acc = 0, 0
-
- # 当不进行训练时,停止梯度更新,节省计算内存消耗
- with torch.no_grad():
- for imgs, target in dataloader:
- imgs, target = imgs.to(device), target.to(device)
-
- # 计算loss
- target_pred = model(imgs)
- loss = loss_fn(target_pred, target)
-
- test_loss += loss.item()
- test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
-
- test_acc /= size
- test_loss /= num_batches
-
- return test_acc, test_loss
-
- ''' 自定义设置动态学习率 '''
- def adjust_learning_rate(optimizer, epoch, start_lr):
- # 每 2 个epoch衰减到原来的 0.92
- lr = start_lr * (0.92 ** (epoch // 2))
- for param_group in optimizer.param_groups:
- param_group['lr'] = lr
-
- # 设置初始学习率
- learn_rate = 1e-4
- optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
-
- # 定义学习率调整函数
- lambda1 = lambda epoch: 0.92 ** (epoch // 4)
- scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) # 选定调整方法
-
- # 定义损失函数
- loss_fn = nn.CrossEntropyLoss()
-
- # 定义训练参数
- epochs = 40
- train_loss = []
- train_acc = []
- test_loss = []
- test_acc = []
-
- best_acc = 0 # 用于保存最佳模型的准确率
-
- for epoch in range(epochs):
- model.train()
- epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
- scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
-
- model.eval()
- epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
-
- # 保存最佳模型到best model
- if epoch_test_acc > best_acc:
- best_acc = epoch_test_acc
- best_model = copy.deepcopy(model)
-
- train_acc.append(epoch_train_acc)
- train_loss.append(epoch_train_loss)
- test_acc.append(epoch_test_acc)
- test_loss.append(epoch_test_loss)
-
- # 获取当前的学习率
- lr = optimizer.state_dict()['param_groups'][0]['lr']
-
- template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, lr:{:.2E}')
- print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))
-
- # 保存最佳模型到文件中
- PATH = './best_model.pth' # 保存的参数文件名
- torch.save(best_model.state_dict(), PATH)
-
- print('Done')
- if __name__ == '__main__':
- main()