排序:
如果按照区间的左端点排序,那么在排完序的列表中,可以合并的区间一定是连续的,如下图所示,标记为蓝色、黄色和绿色的区间分别可以合并为一个大区间,它们在排完序的列表中是连续的
算法:
使用数组merged存储最终的答案
首先,将列表中的区间按照左端点升序排序,然后我们将第一个区间加入merged数组中,并按顺序依次考虑之后的每个区间:
class Solution {
public int[][] merge(int[][] intervals) {
if(intervals.length == 0){
return new int[0][2];
}
Arrays.sort(intervals,new Comparator<int[]>() {
public int compare(int[] interval1,int[] interval2){
return interval1[0] - interval2[0];
}
});
List<int[]> merged = new ArrayList<int[]>();
for(int i= 0;i<intervals.length;i++){
int L = intervals[i][0],R = intervals[i][1];
if(merged.size() == 0 || merged.get(merged.size()-1)[1] < L){
merged.add(new int[]{L,R});
}else{
merged.get(merged.size() -1 )[1] = Math.max(merged.get(merged.size()-1)[1],R);
}
}
return merged.toArray(new int[merged.size()][]);
}
}
方法二:
class Solution {
public int[][] merge(int[][] intervals) {
List<int[]> res = new ArrayList<>();
if(intervals.length == 0){
return res.toArray(new int[0][]);
}
//对起点终点进行排序
Arrays.sort(intervals,(a,b) -> a[0]-b[0]);
int i = 0;
while(i < intervals.length){
int left = intervals[i][0];
int right = intervals[i][1];
//如果有重叠,循环判断哪个起点满足条件
while(i<intervals.length - 1 && intervals[i + 1][0] <= right){
i++;
right = Math.max(right,intervals[i][1]);
}
//将现在的结果放在res中
res.add(new int[]{left,right});
//进行判断下一个区间
i++;
}
return res.toArray(new int[0][]); //将ArrayList转变为数组
}
}