IP(Internet Protocol)和MAC(Media Access Control)帧是计算机网络中两个不同层次的概念,它们在网络通信中扮演不同的角色。下面是它们的相似点和区别以及各自的功能:
相似点:
区别:
碰撞检测是一种网络通信中的冲突检测机制,它用于检测在以太网等共享介质网络中的数据包碰撞。在早期的以太网中,多台设备共享同一物理传输介质,当两个或更多设备尝试同时发送数据包时,数据包可能会在传输介质上发生碰撞,从而损坏数据包。为了检测这些碰撞并采取适当的措施,采用了碰撞检测机制。
碰撞域是一个物理或逻辑区域,在这个区域内的设备在发送数据包时可能会发生碰撞。通常,碰撞域与局域网的物理边界有关。设备在同一碰撞域内,它们之间的数据包冲突会导致碰撞。在以太网中,碰撞域通常由一组通过集线器(hub)连接到共享传输介质的设备组成。
生活例子比喻:
想象一下你参加了一个大型聚会,聚会的人数众多,人们围坐在一个共享的圆桌周围。每个人都想与其他人交谈,但只有一台麦克风可供使用,用于说话。在这种情况下,圆桌就是碰撞域,共享的麦克风代表传输介质。
没有碰撞:当有人想说话时,他们举手示意,等待麦克风空闲,然后开始说话。这时没有碰撞发生,因为只有一个人在使用麦克风。
碰撞发生:现在假设两个人同时举手示意,等待麦克风空闲。如果两个人同时开始说话,他们的声音会混合在一起,听起来会很混乱,这就是碰撞。在网络中,这意味着数据包会在传输介质上发生冲突,从而导致数据包损坏。
解决碰撞:在人们发现发生碰撞时,他们会停止说话,等待一段随机的时间,然后再次尝试。这个随机等待的时间有助于减少再次发生碰撞的可能性。在网络中,也有类似的机制,例如以太网的CSMA/CD(Carrier Sense Multiple Access with Collision Detection)协议,用于检测碰撞并采取适当的措施来避免碰撞继续发生。
MTU(Maximum Transmission Unit)是指网络中的数据包可以传输的最大大小。它表示在一个网络中可以传输的数据包的最大尺寸,通常以字节为单位。MTU的大小取决于网络技术和设备,不同类型的网络可能具有不同的MTU。
MTU的大小对网络性能和数据包传输有重要影响。如果数据包的大小超过了网络的MTU,那么这些数据包需要被分片(拆分成更小的片段)才能在网络上传输。分片会增加网络负载和延迟,因此在设计网络和应用时,通常需要考虑MTU的大小。
为了减少碰撞,网络中的MTU通常会根据网络类型和设备进行调整,以确保数据包不会太大而导致碰撞。同时,也需要考虑到网络设备的缓冲区大小,以避免数据包被截断或丢失。不同的网络技术和协议可能具有不同的MTU值,例如以太网的标准MTU通常为1500字节。
Q:局域网的其他主机是不是得一直去监听有没有数据包发过来?发过来才分析是不是给自己的,不是就丢弃?
A:
在一个以太网局域网中,每个主机确实会监听网络上的数据包,但并不是一直去监听所有的数据包。监听是以太网设备的基本行为,但它并不会一直处理所有数据包。以下是一些重要概念和工作原理:
数据包的监听:每台主机和网络设备都会监听传输在网络上的数据包。这是以太网的基本工作方式。
MAC地址:每个以太网设备都有一个唯一的MAC地址,用于标识设备。当一个数据包到达网络时,它的目标MAC地址与接收设备的MAC地址进行比较。如果匹配,设备会接收并处理该数据包。
广播域:局域网通常被划分为广播域。在同一广播域内的设备会接收该广播域内的广播数据包。广播数据包的目标MAC地址是一个特殊的值,表示发送给本广播域内的所有设备。
数据包过滤:虽然每台设备都会监听网络上的数据包,但通常只有目标MAC地址匹配设备的数据包才会被上层协议栈进一步处理。这是通过底层硬件和操作系统的网卡驱动程序来完成的。
网络堆叠:在接收到数据包后,操作系统的网络协议栈会进行进一步的处理,包括检查目标IP地址、端口号等信息,以决定是否将数据包传递给上层应用程序。这是一个分层处理的过程,只有符合条件的数据包才会到达应用层。
所以,虽然每台主机会监听网络上的数据包,但它们不会一直分析所有的数据包。只有在以下情况下,主机会更进一步分析数据包:
以下是ARP协议的一些关键特点和工作原理:
ARP请求和响应:ARP工作方式如下:
ARP欺骗(ARP Spoofing):ARP协议的一个弱点是它没有对响应的来源进行验证,因此攻击者可以发送伪造的ARP响应,将合法IP地址映射到错误的MAC地址上。这种攻击被称为ARP欺骗,通常用于网络攻击,如中间人攻击。
ARP欺骗(ARP Spoofing)是一种网络攻击,攻击者通过欺骗目标计算机或网络设备来获取网络通信的控制权。这种攻击利用了ARP协议的弱点,即它没有对ARP响应的来源进行验证,因此攻击者可以发送伪造的ARP响应,欺骗其他设备将数据发送到攻击者指定的目标。
下面是有关ARP欺骗的详细介绍:
攻击原理:
- ARP协议工作方式:在一个局域网中,计算机通常使用ARP协议来将IP地址解析为MAC地址。当计算机需要与其他设备通信时,它会广播一个ARP请求,询问某个IP地址对应的MAC地址是什么。拥有该IP地址的设备会回复ARP响应,包含其MAC地址。
- 攻击者的伪装:ARP欺骗攻击者通常位于目标计算机和网络路由器之间,使其能够拦截并修改通信数据。攻击者发送伪造的ARP响应,宣称自己是目标IP地址的合法所有者,并将其自己的MAC地址映射到该IP地址上。
- 目标受害:一旦攻击者成功发送伪造的ARP响应,局域网中的其他设备将开始将数据发送到攻击者的MAC地址,而不是真正的目标设备。这样,攻击者就能够捕获、修改或阻止通信数据。
攻击的目的:
- 数据嗅探:攻击者可以拦截网络通信并捕获敏感数据,例如登录凭据、密码等。
- 中间人攻击:攻击者可以中间人攻击,将自己置于通信双方之间,窃取通信数据并可能修改或篡改数据。
- 网络拒绝服务(DoS):攻击者可以将目标设备的通信路由到无效的位置,从而阻止目标设备与网络的正常通信。
防范措施:
防范ARP欺骗攻击需要采取一些安全措施,包括但不限于:
- 使用静态ARP表项:将关键网络设备的ARP表项设置为静态,以避免被欺骗。
- 网络监控:实施网络监控和入侵检测系统,以检测异常的ARP活动。
- 网络隔离:将网络划分为不同的子网,以减小攻击面。
- ARP缓存超时:减少ARP缓存的超时时间,以减少攻击者的机会。
- 加密通信:使用加密通信协议,确保即使通信被拦截也无法轻易解密。
ARP表冲突:当两台计算机试图使用相同的IP地址时,可能会导致ARP表冲突。这种情况下,计算机可能会收到冲突通知,然后必须解决冲突以确保正确的IP到MAC地址映射。
先要清楚,一般说以太网地址就是指MAC地址。
字段1是ARP请求的目的以太网地址,全1时代表广播地址。
字段2是发送ARP请求的以太网地址。
字段3以太网帧类型表示的是后面的数据类型,ARP请求和ARP应答这个值为0x0806。
字段4表示硬件地址的类型,硬件地址不只以太网一种,是以太网类型时此值为1。
字段5表示要映射的协议地址的类型,要对IPv4地址进行映射,此值为0x0800。
字段6和7表示硬件地址长度和协议地址长度,MAC地址占6字节,IP地址占4字节。
字段8是操作类型字段,值为1,表示进行ARP请求;值为2,表示进行ARP应答;值为3,表示进行RARP请求;值为4,表示进行RARP应答。
字段9是发送端ARP请求或应答的硬件地址,这里是以太网地址,和字段2相同。
字段10是发送ARP请求或应答的IP地址。
字段11和12是目的端的硬件地址和协议地址。
ARP工作过程:
假设主机A和B在同一个网段,主机A要向主机B发送信息,具体的地址解析过程如下:
(1) 主机A首先查看自己的ARP表,如果ARP表中含有主机B对应的ARP表项,则主机A直接利用ARP表中的MAC地址,对IP数据包进行帧封装,并将数据包发送给主机B。
(2) 如果主机A在ARP表中找不到对应的MAC地址,则将缓存该数据报文,然后以广播方式发送一个ARP请求报文。ARP请求报文中的发送端IP地址和发送端MAC地址为主机A的IP地址和MAC地址,目标IP地址和目标MAC地址为主机B的IP地址和全0的MAC地址。由于ARP请求报文以广播方式发送,该网段上的所有主机都可以接收到该请求,但只有被请求的主机(即主机B)会对该请求进行处理。
(3) 主机B比较自己的IP地址和ARP请求报文中的目标IP地址,当两者相同时进行如下处理:将ARP请求报文中的发送端(即主机A)的IP地址和MAC地址存入自己的ARP表中。之后以单播方式发送ARP响应报文给主机A,其中包含了自己的MAC地址。
(4) 主机A收到ARP响应报文后,将主机B的MAC地址加入到自己的ARP表中以用于后续报文的转发,同时将IP数据包进行封装后发送出去。
相关博客推荐:ARP协议详解
----------- 创作不易,点赞支持一下啦,祝君早日进大厂,冲冲冲 --------------