(1) 计算每个tag下的文档数量, 请求语法:
- GET book_shop/it_book/_search
- {
- "size": 0, // 不显示命中(hits)的所有文档信息
- "aggs": {
- "group_by_tags": { // 聚合结果的名称, 需要自定义(复制时请去掉此注释)
- "terms": {
- "field": "tags"
- }
- }
- }
- }
(2) 发生错误:
说明: 索引book_shop的mapping映射是ES自动创建的, 它把tag解析成了text类型, 在发起对tag的聚合请求后, 将抛出如下错误:
- {
- "error": {
- "root_cause": [
- {
- "type": "illegal_argument_exception",
- "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [tags] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."
- }
- ],
- "type": "search_phase_execution_exception",
- "reason": "all shards failed",
- "phase": "query",
- "grouped": true,
- "failed_shards": [......]
- },
- "status": 400
- }
(3) 错误分析:
错误信息:
Set fielddata=true on [xxxx] ......
错误分析: 默认情况下, Elasticsearch 对 text 类型的字段(field)禁用了 fielddata;
text 类型的字段在创建索引时会进行分词处理, 而聚合操作必须基于字段的原始值进行分析;
所以如果要对 text 类型的字段进行聚合操作, 就需要存储其原始值 —— 创建mapping时指定fielddata=true
, 以便通过反转倒排索引(即正排索引)将索引数据加载至内存中.
(4) 解决方案一: 对text类型的字段开启fielddata属性:
将要分组统计的text field(即tags)的fielddata设置为true:
- PUT book_shop/_mapping/it_book
- {
- "properties": {
- "tags": {
- "type": "text",
- "fielddata": true
- }
- }
- }
可参考官方文档进行设置:
fielddata | Elasticsearch Guide [6.6] | Elastic. 成功后的结果如下:
- {
- "acknowledged": true
- }
再次统计, 得到的结果如下:
- {
- "took": 153,
- "timed_out": false,
- "_shards": {
- "total": 5,
- "successful": 5,
- "skipped": 0,
- "failed": 0
- },
- "hits": {
- "total": 4,
- "max_score": 0.0,
- "hits": []
- },
- "aggregations": {
- "group_by_tags": {
- "doc_count_error_upper_bound": 0,
- "sum_other_doc_count": 6,
- "buckets": [
- {
- "key": "java",
- "doc_count": 3
- },
- {
- "key": "程",
- "doc_count": 2
- },
- ......
- ]
- }
- }
- }
(5) 解决方法二: 使用内置keyword字段:
开启fielddata将占用大量的内存.
Elasticsearch 5.x 版本开始支持通过text的内置字段keyword作精确查询、聚合分析:
- GET shop/it_book/_search
- {
- "size": 0,
- "aggs": {
- "group_by_tags": {
- "terms": {
- "field": "tags.keyword" // 使用text类型的内置keyword字段
- }
- }
- }
- }
(1) 统计name中含有“jvm”的图书中每个tag的文档数量, 请求语法:
- GET book_shop/it_book/_search
- {
- "query": {
- "match": { "name": "jvm" }
- },
- "aggs": {
- "group_by_tags": { // 聚合结果的名称, 需要自定义. 下面使用内置的keyword字段:
- "terms": { "field": "tags.keyword" }
- }
- }
- }
(2) 响应结果:
- {
- "took" : 7,
- "timed_out" : false,
- "_shards" : {
- "total" : 5,
- "successful" : 5,
- "skipped" : 0,
- "failed" : 0
- },
- "hits" : {
- "total" : 1,
- "max_score" : 0.64072424,
- "hits" : [
- {
- "_index" : "book_shop",
- "_type" : "it_book",
- "_id" : "2",
- "_score" : 0.64072424,
- "_source" : {
- "name" : "深入理解Java虚拟机:JVM高级特性与最佳实践",
- "author" : "周志明",
- "category" : "编程语言",
- "desc" : "Java图书领域公认的经典著作",
- "price" : 79.0,
- "date" : "2013-10-01",
- "publisher" : "机械工业出版社",
- "tags" : [
- "Java",
- "虚拟机",
- "最佳实践"
- ]
- }
- }
- ]
- },
- "aggregations" : {
- "group_by_tags" : {
- "doc_count_error_upper_bound" : 0,
- "sum_other_doc_count" : 0,
- "buckets" : [
- {
- "key" : "Java",
- "doc_count" : 1
- },
- {
- "key" : "最佳实践",
- "doc_count" : 1
- },
- {
- "key" : "虚拟机",
- "doc_count" : 1
- }
- ]
- }
- }
- }
为某个 text 类型的字段开启fielddata字段后, 聚合分析操作会对这个字段的所有分词分别进行聚合, 获得的结果大多数情况下并不符合我们的需求.
使用keyword内置字段, 不会对相关的分词进行聚合, 结果可能更有用.
—— 推荐使用text类型字段的内置keyword进行聚合操作.
(1) 先按tags分组, 再计算每个tag下图书的平均价格, 请求语法:
- GET book_shop/it_book/_search
- {
- "size": 0,
- "aggs": {
- "group_by_tags": {
- "terms": { "field": "tags.keyword" },
- "aggs": {
- "avg_price": {
- "avg": { "field": "price" }
- }
- }
- }
- }
- }
(2) 响应结果:
- "hits" : {
- "total" : 3,
- "max_score" : 0.0,
- "hits" : [ ]
- },
- "aggregations" : {
- "group_by_tags" : {
- "doc_count_error_upper_bound" : 0,
- "sum_other_doc_count" : 0,
- "buckets" : [
- {
- "key" : "Java",
- "doc_count" : 3,
- "avg_price" : {
- "value" : 102.33333333333333
- }
- },
- {
- "key" : "编程语言",
- "doc_count" : 2,
- "avg_price" : {
- "value" : 114.0
- }
- },
- ......
- ]
- }
- }
(1) 计算每个tag下图书的平均价格, 再按平均价格降序排序, 查询语法:
- GET book_shop/it_book/_search
- {
- "size": 0,
- "aggs": {
- "all_tags": {
- "terms": {
- "field": "tags.keyword",
- "order": { "avg_price": "desc" } // 根据下述统计的结果排序
- },
- "aggs": {
- "avg_price": {
- "avg": { "field": "price" }
- }
- }
- }
- }
- }
(2) 响应结果:
与#2.1节内容相似, 区别在于按照价格排序显示了.
(1) 先按价格区间分组, 组内再按tags分组, 计算每个tags组的平均价格, 查询语法:
- GET book_shop/it_book/_search
- {
- "size": 0,
- "aggs": {
- "group_by_price": {
- "range": {
- "field": "price",
- "ranges": [
- { "from": 00, "to": 100 },
- { "from": 100, "to": 150 }
- ]
- },
- "aggs": {
- "group_by_tags": {
- "terms": { "field": "tags.keyword" },
- "aggs": {
- "avg_price": {
- "avg": { "field": "price" }
- }
- }
- }
- }
- }
- }
- }
(2) 响应结果:
- "hits" : {
- "total" : 3,
- "max_score" : 0.0,
- "hits" : [ ]
- },
- "aggregations" : {
- "group_by_price" : {
- "buckets" : [
- {
- "key" : "0.0-100.0", // 区间0.0-100.0
- "from" : 0.0,
- "to" : 100.0,
- "doc_count" : 1, // 共查找到了3条文档
- "group_by_tags" : { // 对tags分组聚合
- "doc_count_error_upper_bound" : 0,
- "sum_other_doc_count" : 0,
- "buckets" : [
- {
- "key" : "Java",
- "doc_count" : 1,
- "avg_price" : {
- "value" : 79.0
- }
- },
- ......
- ]
- }
- },
- {
- "key" : "100.0-150.0",
- "from" : 100.0,
- "to" : 150.0,
- "doc_count" : 2,
- "group_by_tags" : {
- "doc_count_error_upper_bound" : 0,
- "sum_other_doc_count" : 0,
- "buckets" : [
- {
- "key" : "Java",
- "doc_count" : 2,
- "avg_price" : {
- "value" : 114.0
- }
- },
- ......
- }
- ]
- }
- }
- ]
- }
- }