• 基于Yolov8的野外烟雾检测(1)


    目录

     1.Yolov8介绍

    2.野外火灾烟雾数据集介绍

    2.1数据集划分

    1.2 通过voc_label.py得到适合yolov8需要的txt

    2.3生成内容如下

    3.训练结果分析

    4.系列篇


     1.Yolov8介绍

             Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的(SOTA)模型,它建立在先前YOLO成功基础上,并引入了新功能和改进,以进一步提升性能和灵活性。它可以在大型数据集上进行训练,并且能够在各种硬件平台上运行,从CPU到GPU。

    具体改进如下:

    1. Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;

    2. PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;

    3. Decoupled-Head:是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;

    4. Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;

    5. 损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;

    6. 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式

    框架图提供见链接:Brief summary of YOLOv8 model structure · Issue #189 · ultralytics/ultralytics · GitHub

    2.野外火灾烟雾数据集介绍

    数据集大小737张,train:val:test 随机分配为7:2:1,类别:smoke

    2.1数据集划分

    通过split_train_val.py得到trainval.txt、val.txt、test.txt  

    1. # coding:utf-8
    2. import os
    3. import random
    4. import argparse
    5. parser = argparse.ArgumentParser()
    6. #xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
    7. parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
    8. #数据集的划分,地址选择自己数据下的ImageSets/Main
    9. parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
    10. opt = parser.parse_args()
    11. trainval_percent = 0.9
    12. train_percent = 0.7
    13. xmlfilepath = opt.xml_path
    14. txtsavepath = opt.txt_path
    15. total_xml = os.listdir(xmlfilepath)
    16. if not os.path.exists(txtsavepath):
    17. os.makedirs(txtsavepath)
    18. num = len(total_xml)
    19. list_index = range(num)
    20. tv = int(num * trainval_percent)
    21. tr = int(tv * train_percent)
    22. trainval = random.sample(list_index, tv)
    23. train = random.sample(trainval, tr)
    24. file_trainval = open(txtsavepath + '/trainval.txt', 'w')
    25. file_test = open(txtsavepath + '/test.txt', 'w')
    26. file_train = open(txtsavepath + '/train.txt', 'w')
    27. file_val = open(txtsavepath + '/val.txt', 'w')
    28. for i in list_index:
    29. name = total_xml[i][:-4] + '\n'
    30. if i in trainval:
    31. file_trainval.write(name)
    32. if i in train:
    33. file_train.write(name)
    34. else:
    35. file_val.write(name)
    36. else:
    37. file_test.write(name)
    38. file_trainval.close()
    39. file_train.close()
    40. file_val.close()
    41. file_test.close()

    1.2 通过voc_label.py得到适合yolov8需要的txt

    1. # -*- coding: utf-8 -*-
    2. import xml.etree.ElementTree as ET
    3. import os
    4. from os import getcwd
    5. sets = ['train', 'val']
    6. classes = ["smoke"] # 改成自己的类别
    7. abs_path = os.getcwd()
    8. print(abs_path)
    9. def convert(size, box):
    10. dw = 1. / (size[0])
    11. dh = 1. / (size[1])
    12. x = (box[0] + box[1]) / 2.0 - 1
    13. y = (box[2] + box[3]) / 2.0 - 1
    14. w = box[1] - box[0]
    15. h = box[3] - box[2]
    16. x = x * dw
    17. w = w * dw
    18. y = y * dh
    19. h = h * dh
    20. return x, y, w, h
    21. def convert_annotation(image_id):
    22. in_file = open('Annotations/%s.xml' % (image_id), encoding='UTF-8')
    23. out_file = open('labels/%s.txt' % (image_id), 'w')
    24. tree = ET.parse(in_file)
    25. root = tree.getroot()
    26. size = root.find('size')
    27. w = int(size.find('width').text)
    28. h = int(size.find('height').text)
    29. for obj in root.iter('object'):
    30. difficult = obj.find('difficult').text
    31. #difficult = obj.find('Difficult').text
    32. cls = obj.find('name').text
    33. if cls not in classes or int(difficult) == 1:
    34. continue
    35. cls_id = classes.index(cls)
    36. xmlbox = obj.find('bndbox')
    37. b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
    38. float(xmlbox.find('ymax').text))
    39. b1, b2, b3, b4 = b
    40. # 标注越界修正
    41. if b2 > w:
    42. b2 = w
    43. if b4 > h:
    44. b4 = h
    45. b = (b1, b2, b3, b4)
    46. bb = convert((w, h), b)
    47. out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
    48. wd = getcwd()
    49. for image_set in sets:
    50. if not os.path.exists('labels/'):
    51. os.makedirs('labels/')
    52. image_ids = open('ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
    53. list_file = open('%s.txt' % (image_set), 'w')
    54. for image_id in image_ids:
    55. list_file.write(abs_path + '/images/%s.jpg\n' % (image_id))
    56. convert_annotation(image_id)
    57. list_file.close()# -*- coding: utf-8 -*-
    58. import xml.etree.ElementTree as ET
    59. import os
    60. from os import getcwd
    61. sets = ['train', 'val']
    62. classes = ["smoke"] # 改成自己的类别
    63. abs_path = os.getcwd()
    64. print(abs_path)
    65. def convert(size, box):
    66. dw = 1. / (size[0])
    67. dh = 1. / (size[1])
    68. x = (box[0] + box[1]) / 2.0 - 1
    69. y = (box[2] + box[3]) / 2.0 - 1
    70. w = box[1] - box[0]
    71. h = box[3] - box[2]
    72. x = x * dw
    73. w = w * dw
    74. y = y * dh
    75. h = h * dh
    76. return x, y, w, h
    77. def convert_annotation(image_id):
    78. in_file = open('Annotations/%s.xml' % (image_id), encoding='UTF-8')
    79. out_file = open('labels/%s.txt' % (image_id), 'w')
    80. tree = ET.parse(in_file)
    81. root = tree.getroot()
    82. size = root.find('size')
    83. w = int(size.find('width').text)
    84. h = int(size.find('height').text)
    85. for obj in root.iter('object'):
    86. difficult = obj.find('difficult').text
    87. #difficult = obj.find('Difficult').text
    88. cls = obj.find('name').text
    89. if cls not in classes or int(difficult) == 1:
    90. continue
    91. cls_id = classes.index(cls)
    92. xmlbox = obj.find('bndbox')
    93. b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
    94. float(xmlbox.find('ymax').text))
    95. b1, b2, b3, b4 = b
    96. # 标注越界修正
    97. if b2 > w:
    98. b2 = w
    99. if b4 > h:
    100. b4 = h
    101. b = (b1, b2, b3, b4)
    102. bb = convert((w, h), b)
    103. out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
    104. wd = getcwd()
    105. for image_set in sets:
    106. if not os.path.exists('labels/'):
    107. os.makedirs('labels/')
    108. image_ids = open('ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
    109. list_file = open('%s.txt' % (image_set), 'w')
    110. for image_id in image_ids:
    111. list_file.write(abs_path + '/images/%s.jpg\n' % (image_id))
    112. convert_annotation(image_id)
    113. list_file.close()

    2.3生成内容如下

    3.训练结果分析

    训练结果如下:

    mAP@0.5 0.839

    1. YOLOv8n summary (fused): 168 layers, 3005843 parameters, 0 gradients, 8.1 GFLOPs
    2. Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 4/4 [00:06<00:00, 1.55s/it]
    3. all 199 177 0.749 0.859 0.839 0.469

    4.系列篇

    1)基于Yolov8的野外烟雾检测

    2)基于Yolov8的野外烟雾检测(2):多维协作注意模块MCA| 2023.9最新发布

    3)基于Yolov8的野外烟雾检测(3):动态蛇形卷积,实现暴力涨点 | ICCV2023

    4)基于Yolov8的野外烟雾检测(4):通道优先卷积注意力(CPCA) | 中科院2023最新发表 

    5)  基于Yolov8的野外烟雾检测(5):Gold-YOLO,遥遥领先,超越所有YOLO

  • 相关阅读:
    golang中fallthrough简介及用法
    SCSS的嵌套规则可以减少重复代码,那么如何在嵌套规则中使用父选择器?
    chatgpt赋能python:Python逆序遍历-解决问题的神奇方式
    11月16日,每日信息差
    链表相关算法题
    LeetCode - 160. 相交链表(C语言,配图)
    Centos7安装php-fpm
    Spring进阶(三):WEB
    OCP Java17 SE Developers 复习题05
    Flutter环境搭建及新建项目
  • 原文地址:https://blog.csdn.net/m0_63774211/article/details/133043120