1.圆形检测
OpenCV图像处理中“找圆技术”的使用-图像处理-双翌视觉OpenCV图像处理中“找圆技术”的使用,图像处理,双翌视觉https://www.shuangyi-tech.com/news_224.htmlopencv 找圆心得,模板匹配比霍夫圆心好用 - 知乎1 相比较霍夫找直线算法, 霍夫找圆心算法极其复杂 现在还没弄懂,等弄懂了来补充算法过程 2 记录霍夫找直线的算法过程: 对于图上任意一点, 所有经过这个点的函数可以表示为: x0 cosO + y0sinO = p 其中, p 为…https://zhuanlan.zhihu.com/p/370227157python Blob检测圆点_blob分析 python_天人合一peng的博客-CSDN博客opencvhttps://blog.csdn.net/moonlightpeng/article/details/125561035https://www.cnblogs.com/bjxqmy/p/12333022.htmlhttps://www.cnblogs.com/bjxqmy/p/12333022.html教你用OpenCV 和 Python实现圆物检测_opencv检测物体半径的代码_码农的后花园的博客-CSDN博客点击上方“码农的后花园”,选择“星标”公众号精选文章,第一时间送达基于python使用OpenCV实现在一张图片中检测出圆形,并且根据圆检测结果信息,绘制 标记出圆的边界和圆心。1 Ho...https://blog.csdn.net/weixin_45192980/article/details/119814390?spm=1001.2101.3001.6650.3&utm_medium=distribute.pc_relevant.none-task-blog-2~default~CTRLIST~Rate-3-119814390-blog-103874538.235%5Ev27%5Epc_relevant_3mothn_strategy_recovery&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2~default~CTRLIST~Rate-3-119814390-blog-103874538.235%5Ev27%5Epc_relevant_3mothn_strategy_recovery&utm_relevant_index=4
二值化方法
1. 拿到边框之后没法处理
- from imutils import auto_canny, contours
-
- # 【1】读入图片+预处理
- image = cv2.imread('./data/ac1_bar_rotated.png')# 加载图片
-
- gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 转灰度
- blurred = cv2.GaussianBlur(gray, (5, 5), 0)# 高斯模糊
- edged = auto_canny(blurred) # 边缘检测
-
- fig = plt.figure(figsize=(20, 30))
- plt.imshow(edged, cmap ='gray')
- plt.title(u"边缘检测后的图片")
- plt.axis('off')
-
- # 检测图片中的最外围轮廓
- cnts,_ = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
- print("原始图片检测的轮廓总数:", len(cnts))
-
- # 定义黑色背景幕布
- black_background = np.ones(image.shape, np.uint8)*0
- # 将检测到的轮廓添加幕布上进行展示
- cv2.drawContours(black_background, cnts, -1, (3,240,240), 2)
-
- fig = plt.figure(figsize=(20, 30))
- plt.imshow(black_background)
- plt.title(u"原始图片检测到的所有最外围轮廓")
- plt.axis('off')
2.二值化
- from imutils import auto_canny, contours
-
- # 【1】读入图片+预处理
- image = cv2.imread('./data/ac1_bar_circle_rotated.png')# 加载图片
- gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 转灰度
- # OTSU二值化
- thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
-
- fig = plt.figure(figsize=(15, 20))
- plt.imshow(thresh, cmap ='gray')
- plt.axis('off')
- numpy_img = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 15) # 自动阈值二值化
-
- fig = plt.figure(figsize=(15, 20))
- plt.imshow(thresh, cmap ='gray')
- plt.axis('off')
- img = cv2.imread('./data/ac1_bar_circle_rotated.png')# 加载图片
- gray_src= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
- minThreshValue = 35
- _, gray = cv2.threshold(gray_src, minThreshValue, 255, cv2.THRESH_BINARY)
- gray = cv2.resize(gray, dsize=None, fx=1, fy=1, interpolation=cv2.INTER_LINEAR)
-
- fig = plt.figure(figsize=(15, 20))
- plt.imshow(gray, cmap ='gray')
- plt.axis('off')
-
- kernel = np.ones((3, 3), dtype=np.uint8)
- gray = cv2.dilate(gray, kernel, 1) # 1:迭代次数,也就是执行几次膨胀操作
- gray = cv2.erode(gray, kernel, 1)
-
- fig = plt.figure(figsize=(15, 20))
- plt.imshow(gray, cmap ='gray')
- plt.axis('off')
2.检测图像块