• 算法训练营day49|动态规划 part10:(LeetCode 121. 买卖股票的最佳时机、122.买卖股票的最佳时机II)


    121. 买卖股票的最佳时机

    题目链接🔥
    给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
    你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
    返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

    示例 1:
    输入:[7,1,5,3,6,4]
    输出:5
    解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

    示例 2:
    输入:prices = [7,6,4,3,1]
    输出:0
    解释:在这种情况下, 没有交易完成, 所以最大利润为 0

    贪心方法

    取最左最小值,取最右最大值,那么得到的差值就是最大利润。

    class Solution {
    public:
        int maxProfit(vector<int>& prices) {
            int low = INT_MAX;
            int result = 0;
            for (int i = 0; i < prices.size(); i++) {
                low = min(low, prices[i]);  // 取最左最小价格
                result = max(result, prices[i] - low); // 直接取最大区间利润
            }
            return result;
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    动规方法

    1. 确定dp数组(dp table)以及下标的含义

    dp[i][0] 表示第i天持有股票所得最多现金 ,这里可能有同学疑惑,本题中只能买卖一次,持有股票之后哪还有现金呢?

    其实一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。

    dp[i][1] 表示第i天不持有股票所得最多现金

    注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态

    很多同学把“持有”和“买入”没区分清楚。

    在下面递推公式分析中,我会进一步讲解。

    1. 确定递推公式

    如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

    • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
    • 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]

    那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);

    如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来

    • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
    • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

    同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

    这样递推公式我们就分析完了

    1. dp数组如何初始化

    由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出

    其基础都是要从dp[0][0]和dp[0][1]推导出来。

    那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];

    dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;

    1. 确定遍历顺序

    从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。

    1. 举例推导dp数组

    在这里插入图片描述
    dp[5][1]就是最终结果。

    代码实现

    class Solution {
    public:
        int maxProfit(vector<int>& prices) {
            vector<vector<int>> dp(prices.size(),vector<int> (2));
            dp[0][0]=-prices[0];
            for(int i=1;i<prices.size();i++){
                dp[i][0]=max(-prices[i],dp[i-1][0]);
                dp[i][1]=max(dp[i-1][0]+prices[i],dp[i-1][1]);
            }
            return dp[prices.size()-1][1];
        }
    };
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    122.买卖股票的最佳时机II

    题目链接🔥🔥
    给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
    设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
    注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

    示例 1:
    输入: [7,1,5,3,6,4]
    输出: 7
    解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。

    示例 2:
    输入: [1,2,3,4,5]
    输出: 4
    解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

    示例 3:
    输入: [7,6,4,3,1]
    输出: 0
    解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

    提示:
    1 <= prices.length <= 3 * 10 ^ 4
    0 <= prices[i] <= 10 ^ 4

    思路分析

    本题和121. 买卖股票的最佳时机 的唯一区别是本题股票可以买卖多次了(注意只有一只股票,所以再次购买前要出售掉之前的股票)

    在动规五部曲中,这个区别主要是体现在递推公式上,其他都和121. 买卖股票的最佳时机一样。

    所以我们重点讲一讲递推公式。

    这里重申一下dp数组的含义:

    • dp[i][0] 表示第i天持有股票所得现金。
    • dp[i][1] 表示第i天不持有股票所得最多现金

    如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

    • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
    • 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]

    注意这里和121. 买卖股票的最佳时机唯一不同的地方,就是推导dp[i][0]的时候,第i天买入股票的情况。

    在121. 买卖股票的最佳时机中,因为股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。

    而本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。

    那么第i天持有股票即dp[i][0],如果是第i天买入股票,所得现金就是昨天不持有股票的所得现金 减去 今天的股票价格 即:dp[i - 1][1] - prices[i]。

    再来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来

    第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
    第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]
    注意这里和121. 买卖股票的最佳时机就是一样的逻辑,卖出股票收获利润(可能是负值)天经地义!

    代码如下:(注意代码中的注释,标记了和121.买卖股票的最佳时机唯一不同的地方)

    代码实现

    class Solution {
    public:
        int maxProfit(vector<int>& prices) {
            vector<vector<int>> dp(prices.size(),vector<int> (2));
            dp[0][0]=-prices[0];
            for (int i = 1; i < prices.size(); i++) {
                dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。
                dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
            }
            return dp[prices.size()-1][1];
        }
    };
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    思考总结

    买入股票的时候,可能会有之前买卖的利润即:dp[i - 1][1],所以dp[i - 1][1] - prices[i]。

  • 相关阅读:
    计算机毕业设计(30)java毕设作品之多用户B2C商城平台系统
    GitHub&Gitee&Gitlab&极狐(JihuLab)同时生成并配置SSH公私钥详细过程
    Java面试复习大纲2.0(持续更新)
    新唐NUC980使用记录:开发环境准备与编译配置基础说明
    Python做游戏很难吗—来看看我做的多有意思~
    07 索引
    LeetCode0912.排序数组 Go语言AC笔记
    [山东科技大学OJ]1176 Problem E: 数组去重
    机器学习笔记之马尔可夫链蒙特卡洛方法(四)吉布斯采样
    机器学习深度学习服务器推荐
  • 原文地址:https://blog.csdn.net/weixin_43399263/article/details/132834352