R-Drop的基本思想是:同一个step里面,对于同一个样本,前向传播两次,由于Dropout的存在,会得到两个不同但差异很小的概率分布,通过在原来的交叉熵损失中加入这两个分布的KL散度损失,来共同进行反向传播,参数更新
R-Drop刚好是把sub model和完整model之间加了一个bound,如下图:
在下游任务上可以普遍地涨点
We evaluate SimCSE on standard semantic textual similarity (STS) tasks, and our unsupervised and supervised models using BERTbase achieve an average of 76.3% and 81.6% Spearman’s correlation respectively, a 4.2% and 2.2% improvement compared to the previous best results.
部分参考: