• LeetCode 753. 破解保险箱【欧拉回路,DFS】困难


    本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。

    为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。

    由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。

    有一个需要密码才能打开的保险箱。密码是 n 位数, 密码的每一位都是范围 [0, k - 1] 中的一个数字。

    保险箱有一种特殊的密码校验方法,你可以随意输入密码序列,保险箱会自动记住 最后 n 位输入 ,如果匹配,则能够打开保险箱。

    • 例如,正确的密码是 "345" ,并且你输入的是 "012345" :
      • 输入 0 之后,最后 3 位输入是 "0" ,不正确。
      • 输入 1 之后,最后 3 位输入是 "01" ,不正确。
      • 输入 2 之后,最后 3 位输入是 "012" ,不正确。
      • 输入 3 之后,最后 3 位输入是 "123" ,不正确。
      • 输入 4 之后,最后 3 位输入是 "234" ,不正确。
      • 输入 5 之后,最后 3 位输入是 "345" ,正确,打开保险箱。

    在只知道密码位数 n 和范围边界 k 的前提下,请你找出并返回确保在输入的 某个时刻 能够打开保险箱的任一 最短 密码序列 。

    示例 1:

    输入:n = 1, k = 2
    输出:"10"
    解释:密码只有 1 位,所以输入每一位就可以。"01" 也能够确保打开保险箱。
    
    • 1
    • 2
    • 3

    示例 2:

    输入:n = 2, k = 2
    输出:"01100"
    解释:对于每种可能的密码:
    - "00" 从第 4 位开始输入。
    - "01" 从第 1 位开始输入。
    - "10" 从第 3 位开始输入。
    - "11" 从第 2 位开始输入。
    因此 "01100" 可以确保打开保险箱。"01100""10011""11001" 也可以确保打开保险箱。
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    提示:

    • 1 <= n <= 4
    • 1 <= k <= 10
    • 1 <= k^n <= 4096

    保险箱的密码是一个长度为  n n n 的数字字符串,密码中每位数字的取值范围是从  0 0 0 到  k − 1 k-1 k1 。现在这  n n n 位密码未知,题目要求我们生成一个可以暴力破解这  n n n 位密码的字符串序列  s e q seq seq ,要想用  s e q seq seq 破解密码,那么  s e q seq seq 中必须包含  n n n 位密码的所有组合,最简单的是将  n n n 位密码的  k n k^n kn 个组合拼在一起构成  s e q seq seq ,但这样的  s e q seq seq 太长了,题目要我们生成一个包含  n n n 位密码所有组合情况的一个最短序列

    举个例子, n = 2 , k = 2 n = 2, k = 2 n=2,k=2 ,密码长度为  2 2 2 ,每位数字由 0 0 0 和  1 1 1 组成,那么长度为  2 2 2 的密码就有  k n = 2 2 = 4 k^n = 2^2 = 4 kn=22=4 种组合,即  00 , 01 , 10 , 11 00, 01, 10, 11 00,01,10,11 ,要想破解密码,最简做法是,将这四种密码组合拼在一起组成破解序列  s e q = 00011011 seq = 00011011 seq=00011011 ,这样得到的序列长度为  8 8 8 ,但它不是包含所有密码组合的最短序列。也就是说这种简单拼接在一起的方法,得到的破解序列是冗余的,会增加破解时间。

    而密码破解的方法其实就是朴素的字符串匹配,比如上面的  s e q = 00011011 seq = 00011011 seq=00011011 ,依次匹配的子串是  00 , 00 , 01 , 11 , 10 , 01 , 11 00, 00, 01, 11, 10, 01, 11 00,00,01,11,10,01,11 ,一共做了  7 7 7 次密码匹配,其中  00 , 01 , 11 00, 01, 11 00,01,11 分别匹配了两次,也就是说多做了  3 3 3 次冗余的密码匹配。题目要求的 最短破解序列 就是不会产生冗余密码匹配的序列,长度正好是  k n + ( n − 1 ) k^n + (n - 1) kn+(n1) ,最多只需要匹配  k n k^n kn 次 s e q = 00110 seq = 00110 seq=00110 是上面的其中一个破解序列,长度为  5 5 5 ,依次匹配的子串分别是  00 , 01 , 11 , 10 00, 01, 11, 10 00,01,11,10 ,匹配的正好是所有四种密码组合。

    一种建模方式是:对于所有  m = k n m = k^n m=kn 个密码组合,我们把每个  n n n 位可能的密码看成是图中的一个顶点,对于这  m m m 个顶点构成的 完全图 中,让我们找到这样一个回路  v 1 → v 2 → v 3 → . . . → v m → v 1 v_1 \to v_2\to v_3\to ... \to v_m \to v_1 v1v2v3...vmv1除起始顶点外每个顶点访问且仅访问一次,其中  < u , v > <u,v> 表示回路中一条由顶点 u u u 指向  v v v,且顶点  u u u 长为  n − 1 n-1 n1 的后缀恰好是顶点  v v v 的前缀。最终我们要的 最短破解序列 ,一种顶点序列是  v 1 , v 2 , v 3 , . . . , v m v_1, v_2, v_3, ..., v_m v1,v2,v3,...,vm ,长度为  k n + ( n − 1 ) k^n + (n - 1) kn+(n1) ,这个 最短破解序列 不止一个,因为 回路 中的任意一个顶点都可以做 起始顶点。这就是 哈密顿回路问题

    不过查看Wiki,发现本题求的答案有专门的术语 De Bruijn sequence B ( k , n ) B(k,n) B(k,n) k k k 进制元素构成的循环序列,所有长度为 n n n k k k 进制元素序列都是 B ( k , n ) B(k, n) B(k,n) 的子数组(以环状形式),在 B ( k , n ) B(k,n) B(k,n) 中出现且仅出现一次。

    描述该循环序列的图是 De Bruijn 图(一张欧拉图)。使用( n − 1 = 4 − 1 = 3 n - 1 = 4 - 1=3 n1=41=33-D De Bruijn 图可以循环构造长度为 2 4 = 16 2^4 = 16 24=16B(2,4) De Bruijn 序列。如下的3维 De Bruijn 图中的每条边对应于一个四位数字的序列:三个数字分别标记该边要离开的顶点,其后是一个数字标记该边。如果一个人从 000 000 000 穿过标记为 1 1 1 的边,则一个人到达 001 001 001 ,从而表明 De Bruijn 序列中存在子序列 0001 0001 0001精确遍历每条边一次,就是使用 16 16 16 个四位数序列中的每一个恰好一次。下图,在 B(2,3) 中每个顶点被访问一次,而在 B(2,4) 中每条边(包括自环)都被遍历一次。


    解法 Hierholzer \text{Hierholzer} Hierholzer 算法

    Hierholzer \text{Hierholzer} Hierholzer 算法可以在一个欧拉图中找出欧拉回路。具体地,我们将所有的 n − 1 n-1 n1 位数作为节点,共有 k n − 1 k^{n-1} kn1 个节点,每个节点有 k k k 条入边和出边。如果当前节点对应的数为 a 1 a 2 ⋯ a n − 1 a_1 a_2 \cdots a_{n-1} a1a2an1 ,那么它的第 x x x 条出边就连向数 a 2 ⋯ a n − 1 x a_2 \cdots a_{n-1} x a2an1x 对应的节点。这样从一个节点顺着第 x x x 条边走到另一个节点,就相当于输入了数字 x x x

    在某个节点对应的数的末尾放上它某条出边的编号,就形成了一个 n n n 位数,并且每个节点都能用这样的方式形成 k k k n n n 位数

    例如 k = 4 , n = 3 k=4,n=3 k=4,n=3 时,节点分别为 00 , 01 , 02 , ⋯   , 32 , 33 00,01,02,⋯ ,32,33 00,01,02,,32,33 ,每个节点的出边的编号分别为 0 , 1 , 2 , 3 0,1,2,3 0,1,2,3 ,那么 00 00 00 和它的出边形成了 000 , 001 , 002 , 003 000,001,002,003 000,001,002,003 4 4 4 3 3 3 位数, 32 32 32 和它的出边形成了 320 , 321 , 322 , 323 320,321,322,323 320,321,322,323 4 4 4 3 3 3 位数。这样共计有 k n − 1 × k = k n k^{n-1} \times k = k^n kn1×k=kn n n n 位数,恰好就是所有可能的密码

    由于这个图的每个节点都有 k k k 条入边和出边(有向连通图节点度数都为 0 0 0 ),因此它一定存在一个欧拉回路,即可以从任意一个节点开始,一次性不重复地走完所有的边且回到该节点。因此,我们可以用 Hierholzer \text{Hierholzer} Hierholzer 算法找出这条欧拉回路:

    • 设起始节点对应的数为 u u u ,欧拉回路中每条边的编号为 x 1 , x 2 , x 3 , ⋯ x_1, x_2, x_3, \cdots x1,x2,x3, ,那么最终的字符串即为 u   x 1   x 2   x 3 ⋯   u u~ x_1 ~ x_2 ~ x_3 \cdots\ u u x1 x2 x3 u

    H i e r h o l z e r Hierholzer Hierholzer 算法如下:

    1. 我们从节点 u u u 开始,任意地经过还未经过的边,直到我们「无路可走」。此时我们一定回到了节点 u u u ,这是因为所有节点的入度和出度都相等。
    2. 回到节点 u u u 之后,我们得到了一条从 u u u 开始到 u u u 结束的回路,这条回路上仍然有些节点有未经过的出边。从某个这样的节点 v v v 开始,继续得到一条从 v v v 开始到 v v v 结束的回路,再嵌入之前的回路中,即 u → ⋯ → v → ⋯ → u u \to \cdots \to v \to \cdots \to u uvu
      变为 u → ⋯ → v → ⋯ → v → ⋯ → u u\to \cdots \to v \to \cdots \to v \to \cdots \to u uvvu
    3. 以此类推,直到没有节点有未经过的出边,此时我们就找到了一条欧拉回路。

    实际的代码编写具有一定的技巧性。

    class Solution {
    private:
        int highest, k;
        string ans;
        unordered_set<int> rec;
        void dfs(int node) {
            for (int x = 0; x < k; ++x) {
                int nei = node * 10 + x;
                if (!rec.count(nei)) { // 改为插入边
                    rec.insert(nei);
                    dfs(nei % highest);
                    ans += (x + '0');
                }
            }
        }
    public:
        string crackSafe(int n, int k) {
            this->highest = pow(10, n - 1);
            this->k = k;
            dfs(0); // 从n-1个0出发
            ans += string(n - 1, '0'); // 返回的路径顺序应该是n-1个0+翻转的ans
            // 由于是欧拉回路,所以不用翻转,即可直接返回
            return ans;
        }
    };
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25

    但上述写法比较抽象。我们可以这么写:从一个 n − 1 n-1 n1 长度的全 0 0 0 串出发枚举 k k k 条边,每经过一条边就将其加入到哈希表中,防止重复经过同一条边。

    class Solution {
    private:
        string ans;
        unordered_set<string> edges;
        void dfs(string &cur, int k) {
            for (int i = 0; i < k; ++i) {
                string edge = cur + to_string(i);
                if (!edges.count(edge)) {
                    edges.insert(edge);
                    string next = edge.substr(1);
                    dfs(next, k);
                    ans += to_string(i);
                }
            }
        }
    public:
        string crackSafe(int n, int k) {
            string start = string(n - 1, '0');
            dfs(start, k);
            ans += start;
            return ans;
        }
    };
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    复杂度分析

    • 时间复杂度: O ( n × k n ) O(n \times k^n) O(n×kn)
    • 空间复杂度: O ( n × k n ) O(n \times k^n) O(n×kn)
  • 相关阅读:
    monitor link 联合smart link配合应对复杂的网络
    定时任务系列(8)-Quartz启动核心原理之集群
    Java【初识static、代码块、抽象类、接口、内部类】
    Qt quick-QML地图引擎之v3版本(新增高德/谷歌在线/离线预览/多线程离线裁剪下载/区域查询/位置搜索/路径规划)
    CVS的介绍使用
    【matplotlib基础】--坐标轴
    CPU上下文切换
    【Android】线程下载资源保证资源到位采用了 OkHttp的三方网络下载 & 文件缓存策略
    如何使用命令生成动态链接库.dll文件(保姆级教学)
    手机照片一键去水印轻松摆脱不需要的旁观者
  • 原文地址:https://blog.csdn.net/myRealization/article/details/132948696