• 关键点数据增强


    1.关键点平移数据增强

    1. # 关键点数据增强
    2. from PIL import Image, ImageDraw
    3. import random
    4. import json
    5. from pathlib import Path
    6. # 创建一个黑色背景图像
    7. width, height = 5000, 5000 # 图像宽度和高度
    8. background_color = (0, 0, 0) # 黑色填充
    9. # 随机分布图像
    10. num_images = 1 # 要随机分布的图像数量
    11. folder_path = Path("E:/2") # 测试图像目录
    12. output_path = Path("E:/5") # 输出图像目录
    13. for file in folder_path.rglob("*.jpg"):
    14. # eg: file = "目录名/123.jpg",file_name = "123.jpg"
    15. file_name = file.name
    16. image_origin = Image.open(file)
    17. width_origin,height_origin = image_origin.size
    18. for _ in range(num_images):
    19. #随机选择图像的位置
    20. x = random.randint(0, width - width_origin)
    21. y = random.randint(0, height - height_origin)
    22. print(x,y)
    23. canvas = Image.new("RGB", (width,height), background_color) #新建一个mask,全黑填充
    24. canvas.paste(image_origin, (x,y)) #将原图从(x,y)处粘贴到mask上
    25. Path.mkdir(output_path, exist_ok=True)
    26. img_name = 'a' + '_' + file_name #改变增强后图片的名字
    27. canvas.save(output_path / img_name)
    28. jsonFile = file.with_suffix(".json")
    29. print(jsonFile)
    30. if Path.exists(jsonFile): #判断图片是否有对应的json文件
    31. print(f"找到{file}的Json文件")
    32. with open(jsonFile, "r", encoding="utf-8") as f:
    33. objectDict = json.load(f)
    34. objectDict["imageData"] = None # 清空json文件里加密的imgdata
    35. objectDict["imageHeight"] = height
    36. objectDict["imageWidth"] = width
    37. json_name = 'a' + '_' + jsonFile.name #改变增强后json文件的名字
    38. for i in range(len(objectDict["shapes"])):
    39. if objectDict["shapes"][i]["shape_type"] in ["rectangle","line"]: #矩形框、线段
    40. objectDict["shapes"][i]['points'][0][0]+=x
    41. objectDict["shapes"][i]['points'][0][1]+=y
    42. objectDict["shapes"][i]['points'][1][0]+=x
    43. objectDict["shapes"][i]['points'][1][1]+=y
    44. if objectDict["shapes"][i]["shape_type"] in ["polygon"]: #多段线
    45. for polygonMat in objectDict["shapes"][i]['points']:
    46. polygonMat[0]+=x
    47. polygonMat[1]+=y
    48. if objectDict["shapes"][i]["shape_type"] in ["point"]: #关键点
    49. objectDict["shapes"][i]['points'][0][0]+=x
    50. objectDict["shapes"][i]['points'][0][1]+=y
    51. with open(output_path / json_name, 'w',encoding='utf-8') as f:
    52. json.dump(objectDict, f)
    53. else:
    54. print("没有Json文件")

    2.关键点旋转数据增强

    1. from PIL import Image
    2. import random
    3. import json
    4. from pathlib import Path
    5. import numpy as np
    6. def calc(center, radius):
    7. print(center)
    8. return [[center[0][0] - radius, center[0][1] - radius],
    9. [center[0][0] + radius, center[0][1] + radius]]
    10. folder_path = Path("E:/2") # 原图片和json文件夹目录
    11. output_path = Path("E:\dataset1") # 输出目录(包含img和json)
    12. centerAnno = '6' # 定义圆心标注点,只能有一个
    13. radius = 1430 # 通过radius和圆心centerAnno生成矩形框
    14. for file in folder_path.rglob("*.jpg"):
    15. file_name = file.name
    16. file_name1 = 'r9' + '_' + file_name #改变增强后图片的名字
    17. image_origin = Image.open(file)
    18. width_origin,height_origin = image_origin.size
    19. angle = random.randint(-10, 10) #设置随机旋转范围
    20. print(angle)
    21. rotate_img = image_origin.rotate(angle)
    22. Path.mkdir(output_path, exist_ok=True)
    23. rotate_img.save(output_path / file_name1)
    24. jsonFile = file.with_suffix(".json")
    25. jsonFile1 = 'r9' + '_' + jsonFile.name #改变增强后json文件的名字
    26. print(jsonFile)
    27. if Path.exists(jsonFile):
    28. print(f"找到{file}的Json文件")
    29. with open(jsonFile, "r", encoding="utf-8") as f:
    30. objectDict = json.load(f)
    31. objectDict["imageData"] = None # 清空json文件里加密的imgdata
    32. rad = np.pi / 180 * angle
    33. print(rad)
    34. rot_matrix = np.array([[np.cos(rad), -np.sin(rad)],
    35. [np.sin(rad), np.cos(rad)]])
    36. for shape in objectDict["shapes"]:
    37. if shape["shape_type"] in ["line"]:
    38. x1, y1 = np.dot([shape['points'][0][0] - width_origin /2, shape['points'][0][1] - height_origin /2], rot_matrix)
    39. x2, y2 = np.dot([shape['points'][1][0] - width_origin /2, shape['points'][1][1] - height_origin /2], rot_matrix)
    40. shape['points'][0][0] = x1 + width_origin /2
    41. shape['points'][0][1] = y1 + height_origin /2
    42. shape['points'][1][0] = x2 + width_origin /2
    43. shape['points'][1][1] = y2 + height_origin /2
    44. if shape["shape_type"] in ["polygon"]:
    45. for polygonMat in shape['points']:
    46. x1, y1 = np.dot([polygonMat[0] - width_origin /2, polygonMat[1] - height_origin /2], rot_matrix)
    47. polygonMat[0] = x1 + width_origin /2
    48. polygonMat[1] = y1 + height_origin /2
    49. if shape["shape_type"] in ["point"]:
    50. x1, y1 = np.dot([shape['points'][0][0] - width_origin /2, shape['points'][0][1] - height_origin /2], rot_matrix)
    51. shape['points'][0][0] = x1 + width_origin /2
    52. shape['points'][0][1] = y1 + height_origin /2
    53. # 找到圆心标注框,只能有一个
    54. for shape in objectDict["shapes"]:
    55. if shape["label"] == centerAnno:
    56. centerPoint = shape["points"]
    57. for shape in objectDict["shapes"]:
    58. if shape["shape_type"] == "rectangle":
    59. [shape["points"][0], shape["points"][1]] = calc(centerPoint, radius)
    60. print(centerPoint)
    61. print(shape["points"][0], shape["points"][1])
    62. with open(output_path / jsonFile1, 'w',encoding='utf-8') as f:
    63. json.dump(objectDict, f)
    64. else:
    65. print("没有Json文件")

    3.关键点可视化

    1. # 可视化关键点位置
    2. import cv2
    3. from pathlib import Path
    4. import json
    5. import matplotlib.pyplot as plt
    6. folder_path = Path("E:/2_1") # 原图及json文件夹
    7. output_path = Path("E:/2_2") # 可视化图片输出文件夹
    8. # 载入图像
    9. for img_path in folder_path.rglob("*.jpg"):
    10. print(img_path)
    11. file_name = img_path.name
    12. img_bgr = cv2.imread(str(img_path))
    13. # 载入labelme格式的json标注文件
    14. labelme_path = img_path.with_suffix(".json")
    15. print(labelme_path)
    16. # labelme_path = 'meter_6_25.json'
    17. with open(labelme_path, 'r', encoding='utf-8') as f:
    18. labelme = json.load(f)
    19. # 查看标注信息 rectangle:矩形 point:点 polygon:多边形
    20. # print(labelme.keys())
    21. # dict_keys(['version', 'flags', 'shapes', 'imagePath', 'imageData', 'imageHeight', 'imageWidth'])
    22. # print(labelme['shapes'])
    23. # <<<<<<<<<<<<<<<<<<可视化框(rectangle)标注>>>>>>>>>>>>>>>>>>>>>
    24. # 框可视化配置
    25. bbox_color = (255, 129, 0) # 框的颜色
    26. bbox_thickness = 5 # 框的线宽
    27. # 框类别文字
    28. bbox_labelstr = {
    29. 'font_size':6, # 字体大小
    30. 'font_thickness':14, # 字体粗细
    31. 'offset_x':0, # X 方向,文字偏移距离,向右为正
    32. 'offset_y':-80, # Y 方向,文字偏移距离,向下为正
    33. }
    34. # 画框
    35. for each_ann in labelme['shapes']: # 遍历每一个标注
    36. if each_ann['shape_type'] == 'rectangle': # 筛选出框标注
    37. # 框的类别
    38. bbox_label = each_ann['label']
    39. # 框的两点坐标
    40. bbox_keypoints = each_ann['points']
    41. bbox_keypoint_A_xy = bbox_keypoints[0]
    42. bbox_keypoint_B_xy = bbox_keypoints[1]
    43. # 左上角坐标
    44. bbox_top_left_x = int(min(bbox_keypoint_A_xy[0], bbox_keypoint_B_xy[0]))
    45. bbox_top_left_y = int(min(bbox_keypoint_A_xy[1], bbox_keypoint_B_xy[1]))
    46. # 右下角坐标
    47. bbox_bottom_right_x = int(max(bbox_keypoint_A_xy[0], bbox_keypoint_B_xy[0]))
    48. bbox_bottom_right_y = int(max(bbox_keypoint_A_xy[1], bbox_keypoint_B_xy[1]))
    49. # 画矩形:画框
    50. img_bgr = cv2.rectangle(img_bgr, (bbox_top_left_x, bbox_top_left_y), (bbox_bottom_right_x, bbox_bottom_right_y),
    51. bbox_color, bbox_thickness)
    52. # 写框类别文字:图片,文字字符串,文字左上角坐标,字体,字体大小,颜色,字体粗细
    53. img_bgr = cv2.putText(img_bgr, bbox_label, (
    54. bbox_top_left_x + bbox_labelstr['offset_x'],
    55. bbox_top_left_y + bbox_labelstr['offset_y']),
    56. cv2.FONT_HERSHEY_SIMPLEX, bbox_labelstr['font_size'], bbox_color,
    57. bbox_labelstr['font_thickness'])
    58. # <<<<<<<<<<<<<<<<<<可视化关键点(keypoint)标注>>>>>>>>>>>>>>>>>>>>>
    59. # 关键点的可视化配置
    60. # 关键点配色
    61. kpt_color_map = {
    62. '0': {'name': '0', 'color': [0, 0, 255], 'radius': 25, 'thickness':-1},
    63. '1': {'name': '1', 'color': [255, 0, 0], 'radius': 25, 'thickness':-1},
    64. '2': {'name': '2', 'color': [255, 0, 0], 'radius': 25, 'thickness':-1},
    65. '3': {'name': '3', 'color': [0, 255, 0], 'radius': 25, 'thickness':-1},
    66. '4': {'name': '4', 'color': [0, 255, 0], 'radius': 25, 'thickness':-1},
    67. '5': {'name': '5', 'color': [193, 182, 255], 'radius': 25, 'thickness':-1},
    68. '6': {'name': '6', 'color': [193, 182, 255], 'radius': 25, 'thickness':-1},
    69. # '7': {'name': '7', 'color': [16, 144, 247], 'radius': 25},
    70. # '8': {'name': '8', 'color': [16, 144, 247], 'radius': 25},
    71. }
    72. # 点类别文字
    73. kpt_labelstr = {
    74. 'font_size':4, # 字体大小
    75. 'font_thickness':12, # 字体粗细
    76. 'offset_x':30, # X 方向,文字偏移距离,向右为正
    77. 'offset_y':100, # Y 方向,文字偏移距离,向下为正
    78. }
    79. # 画点
    80. for each_ann in labelme['shapes']: # 遍历每一个标注
    81. if each_ann['shape_type'] == 'point': # 筛选出关键点标注
    82. kpt_label = each_ann['label'] # 该点的类别
    83. # 该点的 XY 坐标
    84. kpt_xy = each_ann['points'][0]
    85. kpt_x, kpt_y = int(kpt_xy[0]), int(kpt_xy[1])
    86. # 该点的可视化配置
    87. kpt_color = kpt_color_map[kpt_label]['color'] # 颜色
    88. kpt_radius = kpt_color_map[kpt_label]['radius'] # 半径
    89. kpt_thickness = kpt_color_map[kpt_label]['thickness'] # 线宽(-1代表填充)
    90. # 画圆:画该关键点
    91. img_bgr = cv2.circle(img_bgr, (kpt_x, kpt_y), kpt_radius, kpt_color, kpt_thickness)
    92. # 写该点类别文字:图片,文字字符串,文字左上角坐标,字体,字体大小,颜色,字体粗细
    93. img_bgr = cv2.putText(img_bgr, kpt_label, (kpt_x + kpt_labelstr['offset_x'], kpt_y + kpt_labelstr['offset_y']),
    94. cv2.FONT_HERSHEY_SIMPLEX, kpt_labelstr['font_size'], kpt_color,
    95. kpt_labelstr['font_thickness'])
    96. # # <<<<<<<<<<<<<<<<<<可视化多段线(polygon)标注>>>>>>>>>>>>>>>>>>>>>
    97. # # 多段线的可视化配置
    98. # poly_color = (151, 57, 224)
    99. # poly_thickness = 3
    100. #
    101. # poly_labelstr = {
    102. # 'font_size':4, # 字体大小
    103. # 'font_thickness':12, # 字体粗细
    104. # 'offset_x':-200, # X 方向,文字偏移距离,向右为正
    105. # 'offset_y':0, # Y 方向,文字偏移距离,向下为正
    106. # }
    107. #
    108. # # 画多段线
    109. # img_mask = np.ones(img_bgr.shape, np.uint8) #创建一个和img_bgr一样大小的黑色mask
    110. #
    111. # for each_ann in labelme['shapes']: # 遍历每一个标注
    112. #
    113. # if each_ann['shape_type'] == 'polygon': # 筛选出多段线(polygon)标注
    114. #
    115. # poly_label = each_ann['label'] # 该多段线的类别
    116. #
    117. # poly_points = [np.array(each_ann['points'], np.int32).reshape((-1, 1, 2))] #reshape后增加一个维度
    118. #
    119. # # 该多段线平均 XY 坐标,用于放置多段线类别文字
    120. # x_mean = int(np.mean(poly_points[0][:, 0, :][:, 0])) #取出所有点的x坐标并求平均值
    121. # y_mean = int(np.mean(poly_points[0][:, 0, :][:, 1])) #取出所有点的y坐标并求平均值
    122. #
    123. # # 画该多段线轮廓
    124. # img_bgr = cv2.polylines(img_bgr, poly_points, isClosed=True, color=poly_color, thickness=poly_thickness)
    125. #
    126. # # 画该多段线内部填充
    127. # img_mask = cv2.fillPoly(img_mask, poly_points, color=poly_color) #填充的颜色为color=poly_color
    128. #
    129. # # 写该多段线类别文字:图片,文字字符串,文字左上角坐标,字体,字体大小,颜色,字体粗细
    130. # img_bgr = cv2.putText(img_bgr, poly_label,
    131. # (x_mean + poly_labelstr['offset_x'], y_mean + poly_labelstr['offset_y']),
    132. # cv2.FONT_HERSHEY_SIMPLEX, poly_labelstr['font_size'], poly_color,
    133. # poly_labelstr['font_thickness'])
    134. # opacity = 0.8 # 透明度,越大越接近原图
    135. # img_bgr = cv2.addWeighted(img_bgr, opacity, img_mask, 1-opacity, 0)
    136. # 可视化
    137. # plt.imshow(img_bgr[:,:,::-1]) # 将bgr通道转换成rgb通道
    138. # plt.show()
    139. # 可视化多段线填充效果
    140. # plt.imshow(img_mask[:, :, ::-1]) # 将bgr通道转换成rgb通道
    141. # plt.show()
    142. # 当前目录下保存可视化结果
    143. cv2.imwrite(str(output_path) + '/' + file_name, img_bgr)

    4.json2txt(用YOLOV8进行关键点训练)

    1. #将坐标框、关键点、线段的json标注转换为txt
    2. import os
    3. import json
    4. import shutil
    5. import numpy as np
    6. from tqdm import tqdm
    7. # 框的类别
    8. bbox_class = {
    9. 'meter3':0
    10. }
    11. # 关键点的类别,注意按顺序写
    12. keypoint_class = ['0','1','2','3','4','5','6','7','8']
    13. path = 'E:/6' #json文件存放路径
    14. save_folder='E:/7' #转换后的txt文件存放路径
    15. # 定义单个json文件的转换
    16. def process_single_json(labelme_path, save_folder):
    17. with open(labelme_path, 'r', encoding='utf-8') as f:
    18. labelme = json.load(f)
    19. img_width = labelme['imageWidth'] # 图像宽度
    20. img_height = labelme['imageHeight'] # 图像高度
    21. # 生成 YOLO 格式的 txt 文件
    22. suffix = labelme_path.split('.')[-2]
    23. # print(suffix)
    24. yolo_txt_path = suffix + '.txt'
    25. # print(yolo_txt_path)
    26. with open(yolo_txt_path, 'w', encoding='utf-8') as f:
    27. for each_ann in labelme['shapes']: # 遍历每个标注
    28. if each_ann['shape_type'] == 'rectangle': # 每个框,在 txt 里写一行
    29. yolo_str = ''
    30. # 框的信息
    31. # 框的类别 ID
    32. bbox_class_id = bbox_class[each_ann['label']]
    33. yolo_str += '{} '.format(bbox_class_id)
    34. # 左上角和右下角的 XY 像素坐标
    35. bbox_top_left_x = int(min(each_ann['points'][0][0], each_ann['points'][1][0]))
    36. bbox_bottom_right_x = int(max(each_ann['points'][0][0], each_ann['points'][1][0]))
    37. bbox_top_left_y = int(min(each_ann['points'][0][1], each_ann['points'][1][1]))
    38. bbox_bottom_right_y = int(max(each_ann['points'][0][1], each_ann['points'][1][1]))
    39. # 框中心点的 XY 像素坐标
    40. bbox_center_x = int((bbox_top_left_x + bbox_bottom_right_x) / 2)
    41. bbox_center_y = int((bbox_top_left_y + bbox_bottom_right_y) / 2)
    42. # 框宽度
    43. bbox_width = bbox_bottom_right_x - bbox_top_left_x
    44. # 框高度
    45. bbox_height = bbox_bottom_right_y - bbox_top_left_y
    46. # 框中心点归一化坐标
    47. bbox_center_x_norm = bbox_center_x / img_width
    48. bbox_center_y_norm = bbox_center_y / img_height
    49. # 框归一化宽度
    50. bbox_width_norm = bbox_width / img_width
    51. # 框归一化高度
    52. bbox_height_norm = bbox_height / img_height
    53. yolo_str += '{:.5f} {:.5f} {:.5f} {:.5f} '.format(bbox_center_x_norm, bbox_center_y_norm,
    54. bbox_width_norm, bbox_height_norm)
    55. ## 找到该框中所有关键点,存在字典 bbox_keypoints_dict 中
    56. bbox_keypoints_dict = {}
    57. for each_ann in labelme['shapes']: # 遍历所有标注
    58. if each_ann['shape_type'] == 'point': # 筛选出关键点标注
    59. # 关键点XY坐标、类别
    60. x = int(each_ann['points'][0][0])
    61. y = int(each_ann['points'][0][1])
    62. label = each_ann['label']
    63. if (x > bbox_top_left_x) & (x < bbox_bottom_right_x) & (y < bbox_bottom_right_y) & \
    64. (y > bbox_top_left_y): # 筛选出在该个体框中的关键点
    65. bbox_keypoints_dict[label] = [x, y]
    66. if each_ann['shape_type'] == 'line': # 筛选出线段标注
    67. # 起点XY坐标、类别
    68. x0 = int(each_ann['points'][0][0])
    69. y0 = int(each_ann['points'][0][1])
    70. label = each_ann['label']
    71. bbox_keypoints_dict[label] = [x0, y0]
    72. # 终点XY坐标、类别
    73. x1 = int(each_ann['points'][1][0])
    74. y1 = int(each_ann['points'][1][1])
    75. label = int(each_ann['label']) + 1 #将字符串转为整形,并+1,代表最后一个点
    76. label = str(label) #将整型转为字符串
    77. bbox_keypoints_dict[label] = [x1, y1]
    78. # print(bbox_keypoints_dict)
    79. # if (x > bbox_top_left_x) & (x < bbox_bottom_right_x) & (y < bbox_bottom_right_y) & \
    80. # (y > bbox_top_left_y): # 筛选出在该个体框中的关键点
    81. # bbox_keypoints_dict[label] = [x, y]
    82. ## 把关键点按顺序排好
    83. for each_class in keypoint_class: # 遍历每一类关键点
    84. if each_class in bbox_keypoints_dict:
    85. keypoint_x_norm = bbox_keypoints_dict[each_class][0] / img_width
    86. keypoint_y_norm = bbox_keypoints_dict[each_class][1] / img_height
    87. yolo_str += '{:.5f} {:.5f} {} '.format(keypoint_x_norm, keypoint_y_norm, 2) # 2可见不遮挡 1遮挡 0没有点
    88. else: # 不存在的点,一律为0
    89. # yolo_str += '0 0 0 '.format(keypoint_x_norm, keypoint_y_norm, 0)
    90. yolo_str += '0 0 0 '
    91. # yolo_str += ' '
    92. # 写入 txt 文件中
    93. f.write(yolo_str + '\n')
    94. shutil.move(yolo_txt_path, save_folder) #从yolo_txt_path文件夹中移动到save_folder文件夹中
    95. # print('{} --> {} 转换完成'.format(labelme_path, yolo_txt_path))
    96. # json2txt
    97. for labelme_path0 in os.listdir(path):
    98. labelme_path = path + '/' + labelme_path0
    99. print(labelme_path)
    100. process_single_json(labelme_path, save_folder)
    101. print('YOLO格式的txt标注文件已保存至 ', save_folder)

    5.划分训练集和验证集

    1. import os
    2. import random
    3. import shutil
    4. # 定义数据目录
    5. data_directory = "E:\dataset_a" # 图片和标签数据目录
    6. # dataset_a
    7. # images
    8. # labels
    9. output_directory = "E:\dataset_b" # 输出数据目录
    10. train_directory = output_directory + "/images/train"
    11. val_directory = output_directory + "/images/val"
    12. label_train_directory = output_directory + "/labels/train"
    13. label_val_directory = output_directory + "/labels/val"
    14. # 创建训练集和验证集目录(图片和标签)
    15. os.makedirs(train_directory, exist_ok=True)
    16. os.makedirs(val_directory, exist_ok=True)
    17. os.makedirs(label_train_directory, exist_ok=True)
    18. os.makedirs(label_val_directory, exist_ok=True)
    19. # 定义划分比例(例如,80%训练集,20%验证集)
    20. split_ratio = 0.8
    21. # 获取数据文件列表
    22. data_files = os.listdir(data_directory + "/images")
    23. # 随机打乱数据文件列表
    24. random.shuffle(data_files)
    25. # 计算划分点
    26. split_point = int(len(data_files) * split_ratio)
    27. # 分配数据文件到训练集和验证集
    28. train_files = data_files[:split_point]
    29. val_files = data_files[split_point:]
    30. # 复制图像文件到相应的目录
    31. for file in train_files:
    32. src_path = os.path.join(data_directory + "/images", file)
    33. dest_path = os.path.join(train_directory, file)
    34. shutil.copy(src_path, dest_path)
    35. for file in val_files:
    36. src_path = os.path.join(data_directory + "/images", file)
    37. dest_path = os.path.join(val_directory, file)
    38. shutil.copy(src_path, dest_path)
    39. # 复制标签文件到相应的目录
    40. for file in train_files:
    41. name = file.split(".")[0]
    42. label_name = name + '.txt'
    43. src_path = os.path.join(data_directory + "/labels", label_name)
    44. dest_path = os.path.join(label_train_directory, label_name)
    45. shutil.copy(src_path, dest_path)
    46. for file in val_files:
    47. name = file.split(".")[0]
    48. label_name = name + '.txt'
    49. src_path = os.path.join(data_directory + "/labels", label_name)
    50. dest_path = os.path.join(label_val_directory, label_name)
    51. shutil.copy(src_path, dest_path)
    52. print(f"划分完成!训练集包含 {len(train_files)} 张图像,验证集包含 {len(val_files)} 张图像。")

  • 相关阅读:
    【Axure教程】中继器联动——二级下拉列表案例
    .net core 和 WPF 开发升讯威在线客服系统:怎样实现拔网线也不丢消息的高可靠通信(附视频)
    Linux内存映射函数mmap与匿名内存块
    MVCC多版本并发控制和幻读问题的解决
    java计算机毕业设计springboot+vue员工管理系统
    Ansys Zemax | 使用 OpticStudio 进行闪光激光雷达系统建模(上)
    杭电多校七 1003-Counting Stickmen(组合数学)
    [运维|数据库] 数据库迁移到金仓数据库时,sys_user表报错原因
    以K近邻算法为例,使用网格搜索GridSearchCV优化模型最佳参数
    IDEA 22.2.3 创建web项目及Tomcat部署与服务器初始界面修改(保姆版)
  • 原文地址:https://blog.csdn.net/m0_56247038/article/details/132783264