- # 关键点数据增强
- from PIL import Image, ImageDraw
- import random
- import json
- from pathlib import Path
-
- # 创建一个黑色背景图像
- width, height = 5000, 5000 # 图像宽度和高度
- background_color = (0, 0, 0) # 黑色填充
-
- # 随机分布图像
- num_images = 1 # 要随机分布的图像数量
- folder_path = Path("E:/2") # 测试图像目录
- output_path = Path("E:/5") # 输出图像目录
- for file in folder_path.rglob("*.jpg"):
- # eg: file = "目录名/123.jpg",file_name = "123.jpg"
- file_name = file.name
- image_origin = Image.open(file)
- width_origin,height_origin = image_origin.size
-
- for _ in range(num_images):
- #随机选择图像的位置
- x = random.randint(0, width - width_origin)
- y = random.randint(0, height - height_origin)
- print(x,y)
-
- canvas = Image.new("RGB", (width,height), background_color) #新建一个mask,全黑填充
- canvas.paste(image_origin, (x,y)) #将原图从(x,y)处粘贴到mask上
-
- Path.mkdir(output_path, exist_ok=True)
- img_name = 'a' + '_' + file_name #改变增强后图片的名字
- canvas.save(output_path / img_name)
-
- jsonFile = file.with_suffix(".json")
- print(jsonFile)
- if Path.exists(jsonFile): #判断图片是否有对应的json文件
- print(f"找到{file}的Json文件")
- with open(jsonFile, "r", encoding="utf-8") as f:
- objectDict = json.load(f)
- objectDict["imageData"] = None # 清空json文件里加密的imgdata
-
- objectDict["imageHeight"] = height
- objectDict["imageWidth"] = width
-
- json_name = 'a' + '_' + jsonFile.name #改变增强后json文件的名字
-
- for i in range(len(objectDict["shapes"])):
- if objectDict["shapes"][i]["shape_type"] in ["rectangle","line"]: #矩形框、线段
- objectDict["shapes"][i]['points'][0][0]+=x
- objectDict["shapes"][i]['points'][0][1]+=y
- objectDict["shapes"][i]['points'][1][0]+=x
- objectDict["shapes"][i]['points'][1][1]+=y
-
- if objectDict["shapes"][i]["shape_type"] in ["polygon"]: #多段线
- for polygonMat in objectDict["shapes"][i]['points']:
- polygonMat[0]+=x
- polygonMat[1]+=y
-
- if objectDict["shapes"][i]["shape_type"] in ["point"]: #关键点
- objectDict["shapes"][i]['points'][0][0]+=x
- objectDict["shapes"][i]['points'][0][1]+=y
-
- with open(output_path / json_name, 'w',encoding='utf-8') as f:
- json.dump(objectDict, f)
-
- else:
- print("没有Json文件")
- from PIL import Image
- import random
- import json
- from pathlib import Path
- import numpy as np
-
-
- def calc(center, radius):
- print(center)
- return [[center[0][0] - radius, center[0][1] - radius],
- [center[0][0] + radius, center[0][1] + radius]]
-
-
- folder_path = Path("E:/2") # 原图片和json文件夹目录
- output_path = Path("E:\dataset1") # 输出目录(包含img和json)
-
- centerAnno = '6' # 定义圆心标注点,只能有一个
- radius = 1430 # 通过radius和圆心centerAnno生成矩形框
-
- for file in folder_path.rglob("*.jpg"):
- file_name = file.name
- file_name1 = 'r9' + '_' + file_name #改变增强后图片的名字
-
- image_origin = Image.open(file)
- width_origin,height_origin = image_origin.size
-
- angle = random.randint(-10, 10) #设置随机旋转范围
- print(angle)
- rotate_img = image_origin.rotate(angle)
-
- Path.mkdir(output_path, exist_ok=True)
- rotate_img.save(output_path / file_name1)
-
- jsonFile = file.with_suffix(".json")
- jsonFile1 = 'r9' + '_' + jsonFile.name #改变增强后json文件的名字
-
- print(jsonFile)
- if Path.exists(jsonFile):
- print(f"找到{file}的Json文件")
- with open(jsonFile, "r", encoding="utf-8") as f:
- objectDict = json.load(f)
-
- objectDict["imageData"] = None # 清空json文件里加密的imgdata
-
- rad = np.pi / 180 * angle
- print(rad)
-
- rot_matrix = np.array([[np.cos(rad), -np.sin(rad)],
- [np.sin(rad), np.cos(rad)]])
-
- for shape in objectDict["shapes"]:
- if shape["shape_type"] in ["line"]:
- x1, y1 = np.dot([shape['points'][0][0] - width_origin /2, shape['points'][0][1] - height_origin /2], rot_matrix)
- x2, y2 = np.dot([shape['points'][1][0] - width_origin /2, shape['points'][1][1] - height_origin /2], rot_matrix)
-
- shape['points'][0][0] = x1 + width_origin /2
- shape['points'][0][1] = y1 + height_origin /2
- shape['points'][1][0] = x2 + width_origin /2
- shape['points'][1][1] = y2 + height_origin /2
-
- if shape["shape_type"] in ["polygon"]:
- for polygonMat in shape['points']:
- x1, y1 = np.dot([polygonMat[0] - width_origin /2, polygonMat[1] - height_origin /2], rot_matrix)
- polygonMat[0] = x1 + width_origin /2
- polygonMat[1] = y1 + height_origin /2
- if shape["shape_type"] in ["point"]:
- x1, y1 = np.dot([shape['points'][0][0] - width_origin /2, shape['points'][0][1] - height_origin /2], rot_matrix)
- shape['points'][0][0] = x1 + width_origin /2
- shape['points'][0][1] = y1 + height_origin /2
-
- # 找到圆心标注框,只能有一个
- for shape in objectDict["shapes"]:
- if shape["label"] == centerAnno:
- centerPoint = shape["points"]
-
- for shape in objectDict["shapes"]:
- if shape["shape_type"] == "rectangle":
- [shape["points"][0], shape["points"][1]] = calc(centerPoint, radius)
- print(centerPoint)
- print(shape["points"][0], shape["points"][1])
-
-
- with open(output_path / jsonFile1, 'w',encoding='utf-8') as f:
- json.dump(objectDict, f)
-
-
- else:
- print("没有Json文件")
-
- # 可视化关键点位置
- import cv2
- from pathlib import Path
- import json
- import matplotlib.pyplot as plt
-
- folder_path = Path("E:/2_1") # 原图及json文件夹
- output_path = Path("E:/2_2") # 可视化图片输出文件夹
-
- # 载入图像
- for img_path in folder_path.rglob("*.jpg"):
- print(img_path)
- file_name = img_path.name
- img_bgr = cv2.imread(str(img_path))
-
- # 载入labelme格式的json标注文件
- labelme_path = img_path.with_suffix(".json")
- print(labelme_path)
- # labelme_path = 'meter_6_25.json'
-
- with open(labelme_path, 'r', encoding='utf-8') as f:
- labelme = json.load(f)
-
- # 查看标注信息 rectangle:矩形 point:点 polygon:多边形
- # print(labelme.keys())
- # dict_keys(['version', 'flags', 'shapes', 'imagePath', 'imageData', 'imageHeight', 'imageWidth'])
- # print(labelme['shapes'])
-
- # <<<<<<<<<<<<<<<<<<可视化框(rectangle)标注>>>>>>>>>>>>>>>>>>>>>
- # 框可视化配置
- bbox_color = (255, 129, 0) # 框的颜色
- bbox_thickness = 5 # 框的线宽
-
- # 框类别文字
- bbox_labelstr = {
- 'font_size':6, # 字体大小
- 'font_thickness':14, # 字体粗细
- 'offset_x':0, # X 方向,文字偏移距离,向右为正
- 'offset_y':-80, # Y 方向,文字偏移距离,向下为正
- }
- # 画框
- for each_ann in labelme['shapes']: # 遍历每一个标注
-
- if each_ann['shape_type'] == 'rectangle': # 筛选出框标注
-
- # 框的类别
- bbox_label = each_ann['label']
- # 框的两点坐标
- bbox_keypoints = each_ann['points']
- bbox_keypoint_A_xy = bbox_keypoints[0]
- bbox_keypoint_B_xy = bbox_keypoints[1]
- # 左上角坐标
- bbox_top_left_x = int(min(bbox_keypoint_A_xy[0], bbox_keypoint_B_xy[0]))
- bbox_top_left_y = int(min(bbox_keypoint_A_xy[1], bbox_keypoint_B_xy[1]))
- # 右下角坐标
- bbox_bottom_right_x = int(max(bbox_keypoint_A_xy[0], bbox_keypoint_B_xy[0]))
- bbox_bottom_right_y = int(max(bbox_keypoint_A_xy[1], bbox_keypoint_B_xy[1]))
-
- # 画矩形:画框
- img_bgr = cv2.rectangle(img_bgr, (bbox_top_left_x, bbox_top_left_y), (bbox_bottom_right_x, bbox_bottom_right_y),
- bbox_color, bbox_thickness)
-
- # 写框类别文字:图片,文字字符串,文字左上角坐标,字体,字体大小,颜色,字体粗细
- img_bgr = cv2.putText(img_bgr, bbox_label, (
- bbox_top_left_x + bbox_labelstr['offset_x'],
- bbox_top_left_y + bbox_labelstr['offset_y']),
- cv2.FONT_HERSHEY_SIMPLEX, bbox_labelstr['font_size'], bbox_color,
- bbox_labelstr['font_thickness'])
-
-
- # <<<<<<<<<<<<<<<<<<可视化关键点(keypoint)标注>>>>>>>>>>>>>>>>>>>>>
- # 关键点的可视化配置
- # 关键点配色
- kpt_color_map = {
- '0': {'name': '0', 'color': [0, 0, 255], 'radius': 25, 'thickness':-1},
- '1': {'name': '1', 'color': [255, 0, 0], 'radius': 25, 'thickness':-1},
- '2': {'name': '2', 'color': [255, 0, 0], 'radius': 25, 'thickness':-1},
- '3': {'name': '3', 'color': [0, 255, 0], 'radius': 25, 'thickness':-1},
- '4': {'name': '4', 'color': [0, 255, 0], 'radius': 25, 'thickness':-1},
- '5': {'name': '5', 'color': [193, 182, 255], 'radius': 25, 'thickness':-1},
- '6': {'name': '6', 'color': [193, 182, 255], 'radius': 25, 'thickness':-1},
- # '7': {'name': '7', 'color': [16, 144, 247], 'radius': 25},
- # '8': {'name': '8', 'color': [16, 144, 247], 'radius': 25},
- }
-
- # 点类别文字
- kpt_labelstr = {
- 'font_size':4, # 字体大小
- 'font_thickness':12, # 字体粗细
- 'offset_x':30, # X 方向,文字偏移距离,向右为正
- 'offset_y':100, # Y 方向,文字偏移距离,向下为正
- }
-
- # 画点
- for each_ann in labelme['shapes']: # 遍历每一个标注
- if each_ann['shape_type'] == 'point': # 筛选出关键点标注
- kpt_label = each_ann['label'] # 该点的类别
- # 该点的 XY 坐标
- kpt_xy = each_ann['points'][0]
- kpt_x, kpt_y = int(kpt_xy[0]), int(kpt_xy[1])
- # 该点的可视化配置
- kpt_color = kpt_color_map[kpt_label]['color'] # 颜色
- kpt_radius = kpt_color_map[kpt_label]['radius'] # 半径
- kpt_thickness = kpt_color_map[kpt_label]['thickness'] # 线宽(-1代表填充)
- # 画圆:画该关键点
- img_bgr = cv2.circle(img_bgr, (kpt_x, kpt_y), kpt_radius, kpt_color, kpt_thickness)
- # 写该点类别文字:图片,文字字符串,文字左上角坐标,字体,字体大小,颜色,字体粗细
- img_bgr = cv2.putText(img_bgr, kpt_label, (kpt_x + kpt_labelstr['offset_x'], kpt_y + kpt_labelstr['offset_y']),
- cv2.FONT_HERSHEY_SIMPLEX, kpt_labelstr['font_size'], kpt_color,
- kpt_labelstr['font_thickness'])
-
-
- # # <<<<<<<<<<<<<<<<<<可视化多段线(polygon)标注>>>>>>>>>>>>>>>>>>>>>
- # # 多段线的可视化配置
- # poly_color = (151, 57, 224)
- # poly_thickness = 3
- #
- # poly_labelstr = {
- # 'font_size':4, # 字体大小
- # 'font_thickness':12, # 字体粗细
- # 'offset_x':-200, # X 方向,文字偏移距离,向右为正
- # 'offset_y':0, # Y 方向,文字偏移距离,向下为正
- # }
- #
- # # 画多段线
- # img_mask = np.ones(img_bgr.shape, np.uint8) #创建一个和img_bgr一样大小的黑色mask
- #
- # for each_ann in labelme['shapes']: # 遍历每一个标注
- #
- # if each_ann['shape_type'] == 'polygon': # 筛选出多段线(polygon)标注
- #
- # poly_label = each_ann['label'] # 该多段线的类别
- #
- # poly_points = [np.array(each_ann['points'], np.int32).reshape((-1, 1, 2))] #reshape后增加一个维度
- #
- # # 该多段线平均 XY 坐标,用于放置多段线类别文字
- # x_mean = int(np.mean(poly_points[0][:, 0, :][:, 0])) #取出所有点的x坐标并求平均值
- # y_mean = int(np.mean(poly_points[0][:, 0, :][:, 1])) #取出所有点的y坐标并求平均值
- #
- # # 画该多段线轮廓
- # img_bgr = cv2.polylines(img_bgr, poly_points, isClosed=True, color=poly_color, thickness=poly_thickness)
- #
- # # 画该多段线内部填充
- # img_mask = cv2.fillPoly(img_mask, poly_points, color=poly_color) #填充的颜色为color=poly_color
- #
- # # 写该多段线类别文字:图片,文字字符串,文字左上角坐标,字体,字体大小,颜色,字体粗细
- # img_bgr = cv2.putText(img_bgr, poly_label,
- # (x_mean + poly_labelstr['offset_x'], y_mean + poly_labelstr['offset_y']),
- # cv2.FONT_HERSHEY_SIMPLEX, poly_labelstr['font_size'], poly_color,
- # poly_labelstr['font_thickness'])
-
- # opacity = 0.8 # 透明度,越大越接近原图
- # img_bgr = cv2.addWeighted(img_bgr, opacity, img_mask, 1-opacity, 0)
-
- # 可视化
- # plt.imshow(img_bgr[:,:,::-1]) # 将bgr通道转换成rgb通道
- # plt.show()
-
- # 可视化多段线填充效果
- # plt.imshow(img_mask[:, :, ::-1]) # 将bgr通道转换成rgb通道
- # plt.show()
-
- # 当前目录下保存可视化结果
- cv2.imwrite(str(output_path) + '/' + file_name, img_bgr)
- #将坐标框、关键点、线段的json标注转换为txt
- import os
- import json
- import shutil
- import numpy as np
- from tqdm import tqdm
-
- # 框的类别
- bbox_class = {
- 'meter3':0
- }
- # 关键点的类别,注意按顺序写
- keypoint_class = ['0','1','2','3','4','5','6','7','8']
-
- path = 'E:/6' #json文件存放路径
- save_folder='E:/7' #转换后的txt文件存放路径
-
- # 定义单个json文件的转换
- def process_single_json(labelme_path, save_folder):
- with open(labelme_path, 'r', encoding='utf-8') as f:
- labelme = json.load(f)
-
- img_width = labelme['imageWidth'] # 图像宽度
- img_height = labelme['imageHeight'] # 图像高度
-
- # 生成 YOLO 格式的 txt 文件
- suffix = labelme_path.split('.')[-2]
- # print(suffix)
- yolo_txt_path = suffix + '.txt'
- # print(yolo_txt_path)
-
- with open(yolo_txt_path, 'w', encoding='utf-8') as f:
-
- for each_ann in labelme['shapes']: # 遍历每个标注
-
- if each_ann['shape_type'] == 'rectangle': # 每个框,在 txt 里写一行
-
- yolo_str = ''
-
- # 框的信息
- # 框的类别 ID
- bbox_class_id = bbox_class[each_ann['label']]
- yolo_str += '{} '.format(bbox_class_id)
- # 左上角和右下角的 XY 像素坐标
- bbox_top_left_x = int(min(each_ann['points'][0][0], each_ann['points'][1][0]))
- bbox_bottom_right_x = int(max(each_ann['points'][0][0], each_ann['points'][1][0]))
- bbox_top_left_y = int(min(each_ann['points'][0][1], each_ann['points'][1][1]))
- bbox_bottom_right_y = int(max(each_ann['points'][0][1], each_ann['points'][1][1]))
- # 框中心点的 XY 像素坐标
- bbox_center_x = int((bbox_top_left_x + bbox_bottom_right_x) / 2)
- bbox_center_y = int((bbox_top_left_y + bbox_bottom_right_y) / 2)
- # 框宽度
- bbox_width = bbox_bottom_right_x - bbox_top_left_x
- # 框高度
- bbox_height = bbox_bottom_right_y - bbox_top_left_y
- # 框中心点归一化坐标
- bbox_center_x_norm = bbox_center_x / img_width
- bbox_center_y_norm = bbox_center_y / img_height
- # 框归一化宽度
- bbox_width_norm = bbox_width / img_width
- # 框归一化高度
- bbox_height_norm = bbox_height / img_height
-
- yolo_str += '{:.5f} {:.5f} {:.5f} {:.5f} '.format(bbox_center_x_norm, bbox_center_y_norm,
- bbox_width_norm, bbox_height_norm)
-
- ## 找到该框中所有关键点,存在字典 bbox_keypoints_dict 中
- bbox_keypoints_dict = {}
- for each_ann in labelme['shapes']: # 遍历所有标注
- if each_ann['shape_type'] == 'point': # 筛选出关键点标注
- # 关键点XY坐标、类别
- x = int(each_ann['points'][0][0])
- y = int(each_ann['points'][0][1])
- label = each_ann['label']
- if (x > bbox_top_left_x) & (x < bbox_bottom_right_x) & (y < bbox_bottom_right_y) & \
- (y > bbox_top_left_y): # 筛选出在该个体框中的关键点
- bbox_keypoints_dict[label] = [x, y]
-
- if each_ann['shape_type'] == 'line': # 筛选出线段标注
- # 起点XY坐标、类别
- x0 = int(each_ann['points'][0][0])
- y0 = int(each_ann['points'][0][1])
- label = each_ann['label']
- bbox_keypoints_dict[label] = [x0, y0]
- # 终点XY坐标、类别
- x1 = int(each_ann['points'][1][0])
- y1 = int(each_ann['points'][1][1])
- label = int(each_ann['label']) + 1 #将字符串转为整形,并+1,代表最后一个点
- label = str(label) #将整型转为字符串
- bbox_keypoints_dict[label] = [x1, y1]
- # print(bbox_keypoints_dict)
-
- # if (x > bbox_top_left_x) & (x < bbox_bottom_right_x) & (y < bbox_bottom_right_y) & \
- # (y > bbox_top_left_y): # 筛选出在该个体框中的关键点
- # bbox_keypoints_dict[label] = [x, y]
-
- ## 把关键点按顺序排好
- for each_class in keypoint_class: # 遍历每一类关键点
- if each_class in bbox_keypoints_dict:
- keypoint_x_norm = bbox_keypoints_dict[each_class][0] / img_width
- keypoint_y_norm = bbox_keypoints_dict[each_class][1] / img_height
-
- yolo_str += '{:.5f} {:.5f} {} '.format(keypoint_x_norm, keypoint_y_norm, 2) # 2可见不遮挡 1遮挡 0没有点
- else: # 不存在的点,一律为0
- # yolo_str += '0 0 0 '.format(keypoint_x_norm, keypoint_y_norm, 0)
- yolo_str += '0 0 0 '
- # yolo_str += ' '
- # 写入 txt 文件中
- f.write(yolo_str + '\n')
-
- shutil.move(yolo_txt_path, save_folder) #从yolo_txt_path文件夹中移动到save_folder文件夹中
- # print('{} --> {} 转换完成'.format(labelme_path, yolo_txt_path))
-
-
- # json2txt
- for labelme_path0 in os.listdir(path):
- labelme_path = path + '/' + labelme_path0
- print(labelme_path)
- process_single_json(labelme_path, save_folder)
- print('YOLO格式的txt标注文件已保存至 ', save_folder)
- import os
- import random
- import shutil
-
- # 定义数据目录
- data_directory = "E:\dataset_a" # 图片和标签数据目录
- # dataset_a
- # images
- # labels
-
- output_directory = "E:\dataset_b" # 输出数据目录
- train_directory = output_directory + "/images/train"
- val_directory = output_directory + "/images/val"
- label_train_directory = output_directory + "/labels/train"
- label_val_directory = output_directory + "/labels/val"
-
- # 创建训练集和验证集目录(图片和标签)
- os.makedirs(train_directory, exist_ok=True)
- os.makedirs(val_directory, exist_ok=True)
- os.makedirs(label_train_directory, exist_ok=True)
- os.makedirs(label_val_directory, exist_ok=True)
-
- # 定义划分比例(例如,80%训练集,20%验证集)
- split_ratio = 0.8
-
- # 获取数据文件列表
- data_files = os.listdir(data_directory + "/images")
-
- # 随机打乱数据文件列表
- random.shuffle(data_files)
-
- # 计算划分点
- split_point = int(len(data_files) * split_ratio)
-
- # 分配数据文件到训练集和验证集
- train_files = data_files[:split_point]
- val_files = data_files[split_point:]
-
- # 复制图像文件到相应的目录
- for file in train_files:
- src_path = os.path.join(data_directory + "/images", file)
- dest_path = os.path.join(train_directory, file)
- shutil.copy(src_path, dest_path)
-
- for file in val_files:
- src_path = os.path.join(data_directory + "/images", file)
- dest_path = os.path.join(val_directory, file)
- shutil.copy(src_path, dest_path)
-
- # 复制标签文件到相应的目录
- for file in train_files:
- name = file.split(".")[0]
- label_name = name + '.txt'
- src_path = os.path.join(data_directory + "/labels", label_name)
- dest_path = os.path.join(label_train_directory, label_name)
- shutil.copy(src_path, dest_path)
-
- for file in val_files:
- name = file.split(".")[0]
- label_name = name + '.txt'
- src_path = os.path.join(data_directory + "/labels", label_name)
- dest_path = os.path.join(label_val_directory, label_name)
- shutil.copy(src_path, dest_path)
-
- print(f"划分完成!训练集包含 {len(train_files)} 张图像,验证集包含 {len(val_files)} 张图像。")