• 一个基本的BERT模型框架


    构建一个完整的BERT模型并进行训练是一个复杂且耗时的任务。BERT模型由多个组件组成,包括嵌入层、Transformer编码器和分类器等。编写这些组件的完整代码超出了文本的范围。然而,一个基本的BERT模型框架以便了解其结构和主要组件的设置。

    1. import torch
    2. import torch.nn as nn
    3. # BERT Model
    4. class BERTModel(nn.Module):
    5. def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers, num_heads, max_seq_length, num_classes):
    6. super(BERTModel, self).__init__()
    7. self.embedding = nn.Embedding(vocab_size, embedding_dim)
    8. self.position_embedding = nn.Embedding(max_seq_length, embedding_dim)
    9. self.transformer_blocks = nn.ModuleList([
    10. TransformerBlock(embedding_dim, hidden_dim, num_heads)
    11. for _ in range(num_layers)
    12. ])
    13. self.classifier = nn.Linear(embedding_dim, num_classes)
    14. self.dropout = nn.Dropout(p=0.1)
    15. def forward(self, input_ids, attention_mask):
    16. embedded = self.embedding(input_ids) # [batch_size, seq_length, embedding_dim]
    17. positions = torch.arange(0, input_ids.size(1), device=input_ids.device).unsqueeze(0).expand_as(input_ids)
    18. position_embedded = self.position_embedding(positions) # [batch_size, seq_length, embedding_dim]
    19. encoded = self.dropout(embedded + position_embedded) # [batch_size, seq_length, embedding_dim]
    20. for transformer_block in self.transformer_blocks:
    21. encoded = transformer_block(encoded, attention_mask)
    22. pooled_output = encoded[:, 0, :] # [batch_size, embedding_dim]
    23. logits = self.classifier(pooled_output) # [batch_size, num_classes]
    24. return logits
    25. # Transformer Block
    26. class TransformerBlock(nn.Module):
    27. def __init__(self, embedding_dim, hidden_dim, num_heads):
    28. super(TransformerBlock, self).__init__()
    29. self.attention = MultiHeadAttention(embedding_dim, num_heads)
    30. self.feed_forward = FeedForward(hidden_dim, embedding_dim)
    31. self.layer_norm1 = nn.LayerNorm(embedding_dim)
    32. self.layer_norm2 = nn.LayerNorm(embedding_dim)
    33. def forward(self, x, attention_mask):
    34. attended = self.attention(x, x, x, attention_mask) # [batch_size, seq_length, embedding_dim]
    35. residual1 = x + attended
    36. normalized1 = self.layer_norm1(residual1) # [batch_size, seq_length, embedding_dim]
    37. fed_forward = self.feed_forward(normalized1) # [batch_size, seq_length, embedding_dim]
    38. residual2 = normalized1 + fed_forward
    39. normalized2 = self.layer_norm2(residual2) # [batch_size, seq_length, embedding_dim]
    40. return normalized2
    41. # Multi-Head Attention
    42. class MultiHeadAttention(nn.Module):
    43. def __init__(self, embedding_dim, num_heads):
    44. super(MultiHeadAttention, self).__init__()
    45. self.num_heads = num_heads
    46. self.head_dim = embedding_dim // num_heads
    47. self.q_linear = nn.Linear(embedding_dim, embedding_dim)
    48. self.k_linear = nn.Linear(embedding_dim, embedding_dim)
    49. self.v_linear = nn.Linear(embedding_dim, embedding_dim)
    50. self.out_linear = nn.Linear(embedding_dim, embedding_dim)
    51. def forward(self, query, key, value, mask=None):
    52. batch_size = query.size(0)
    53. query = self.q_linear(query) # [batch_size, seq_length, embedding_dim]
    54. key = self.k_linear(key) # [batch_size, seq_length, embedding_dim]
    55. value = self.v_linear(value) # [batch_size, seq_length, embedding_dim]
    56. query = self._split_heads(query) # [batch_size, num_heads, seq_length, head_dim]
    57. key = self._split_heads(key) # [batch_size, num_heads, seq_length, head_dim]
    58. value = self._split_heads(value) # [batch_size, num_heads, seq_length, head_dim]
    59. scores = torch.matmul(query, key.transpose(-1, -2)) # [batch_size, num_heads, seq_length, seq_length]
    60. scores = scores / torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32, device=scores.device))
    61. if mask is not None:
    62. scores = scores.masked_fill(mask.unsqueeze(1).unsqueeze(2), -1e9)
    63. attention_outputs = torch.softmax(scores, dim=-1) # [batch_size, num_heads, seq_length, seq_length]
    64. attention_outputs = self.dropout(attention_outputs)
    65. attended = torch.matmul(attention_outputs, value) # [batch_size, num_heads, seq_length, head_dim]
    66. attended = attended.transpose(1, 2).contiguous() # [batch_size, seq_length, num_heads, head_dim]
    67. attended = attended.view(batch_size, -1, self.embedding_dim) # [batch_size, seq_length, embedding_dim]
    68. attended = self.out_linear(attended) # [batch_size, seq_length, embedding_dim]
    69. return attended
    70. def _split_heads(self, x):
    71. batch_size, seq_length, embedding_dim = x.size()
    72. x = x.view(batch_size, seq_length, self.num_heads, self.head_dim)
    73. x = x.transpose(1, 2).contiguous()
    74. return x
    75. # Feed Forward
    76. class FeedForward(nn.Module):
    77. def __init__(self, hidden_dim, embedding_dim):
    78. super(FeedForward, self).__init__()
    79. self.linear1 = nn.Linear(embedding_dim, hidden_dim)
    80. self.activation = nn.ReLU()
    81. self.dropout = nn.Dropout(p=0.1)
    82. self.linear2 = nn.Linear(hidden_dim, embedding_dim)
    83. def forward(self, x):
    84. x = self.linear1(x) # [batch_size, seq_length, hidden_dim]
    85. x = self.activation(x)
    86. x = self.dropout(x)
    87. x = self.linear2(x) # [batch_size, seq_length, embedding_dim]
    88. return x
    89. # Example usage
    90. vocab_size = 10000
    91. embedding_dim = 300
    92. hidden_dim = 768
    93. num_layers = 12
    94. num_heads = 12
    95. max_seq_length = 512
    96. num_classes = 2
    97. model = BERTModel(vocab_size, embedding_dim, hidden_dim, num_layers, num_heads, max_seq_length, num_classes)
    98. input_ids = torch.tensor([[1, 2, 3, 4, 5]]).long()
    99. attention_mask = torch.tensor([[1, 1, 1, 1, 1]]).long()
    100. logits = model(input_ids, attention_mask)
    101. print(logits.shape) # [1, num_classes]

    这段代码给出了一个基本的BERT模型结构,并包含了Transformer块、注意力机制和前馈神经网络等组件。您需要根据自己的需求和数据集来调整参数和模型结构。

    请注意,这只是一个简化的版本,真实的BERT模型还包括Masked Language Modeling(MLM)和Next Sentence Prediction(NSP)等预训练任务。此外,还需要进行数据预处理、损失函数的定义和训练循环等。在实际环境中,强烈建议使用已经经过大规模预训练的BERT模型,如Hugging Face的transformers库中的预训练模型,以获得更好的性能效果。

  • 相关阅读:
    MySQL覆盖索引的含义
    [附源码]计算机毕业设计JAVAjsp游乐园管理系统
    js基础算法
    ES6带来那些js新特性?
    Reactive.Net绑定Subscribe调用wpf控件报错
    C++拷贝构造函数
    【Redis】集合对象和有序集合对象
    redis中springboot的redisTemplate简单的增删查
    Elasticsearch学习系列一(部署和配置IK分词器)
    【摸鱼系列】3万张4K壁纸还不够你换的吗?python还可以实现更多采集可能
  • 原文地址:https://blog.csdn.net/Metal1/article/details/132890889