• LeetCode //C - 173. Binary Search Tree Iterator


    173. Binary Search Tree Iterator

    Implement the BSTIterator class that represents an iterator over the in-order traversal of a binary search tree (BST):

    • BSTIterator(TreeNode root) Initializes an object of the BSTIterator class. The root of the BST is given as part of the constructor. The pointer should be initialized to a non-existent number smaller than any element in the BST.
    • boolean hasNext() Returns true if there exists a number in the traversal to the right of the pointer, otherwise returns false.
    • int next() Moves the pointer to the right, then returns the number at the pointer.

    Notice that by initializing the pointer to a non-existent smallest number, the first call to next() will return the smallest element in the BST.

    You may assume that next() calls will always be valid. That is, there will be at least a next number in the in-order traversal when next() is called.
     

    Example 1:

    在这里插入图片描述

    Input:
    [“BSTIterator”, “next”, “next”, “hasNext”, “next”, “hasNext”, “next”, “hasNext”, “next”, “hasNext”]
    [[[7, 3, 15, null, null, 9, 20]], [], [], [], [], [], [], [], [], []]
    Output:
    [null, 3, 7, true, 9, true, 15, true, 20, false]
    Explanation:
    BSTIterator bSTIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]);
    bSTIterator.next(); // return 3
    bSTIterator.next(); // return 7
    bSTIterator.hasNext(); // return True
    bSTIterator.next(); // return 9
    bSTIterator.hasNext(); // return True
    bSTIterator.next(); // return 15
    bSTIterator.hasNext(); // return True
    bSTIterator.next(); // return 20
    bSTIterator.hasNext(); // return False

    Constraints:
    • The number of nodes in the tree is in the range [ 1 , 1 0 5 1, 10^5 1,105].
    • 0 < = N o d e . v a l < = 1 0 6 0 <= Node.val <= 10^6 0<=Node.val<=106
    • At most 1 0 5 10^5 105 calls will be made to hasNext, and next.

    From: LeetCode
    Link: 173. Binary Search Tree Iterator


    Solution:

    Ideas:
    1. During initialization (bSTIteratorCreate), perform an in-order traversal of the BST and store the nodes in a list.
    2. Use an index to keep track of the current position in the list.
    3. For the next method, return the node at the current index and increment the index.
    4. For the hasNext method, check if the index is less than the length of the list.
    5. For the free method, release any dynamically allocated memory.
    Code:
    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     struct TreeNode *left;
     *     struct TreeNode *right;
     * };
     */
    
    typedef struct {
        int* nodes;
        int index;
        int size;
    } BSTIterator;
    
    void inOrder(struct TreeNode* root, int* nodes, int* index) {
        if (!root) return;
        
        inOrder(root->left, nodes, index);
        nodes[(*index)++] = root->val;
        inOrder(root->right, nodes, index);
    }
    
    BSTIterator* bSTIteratorCreate(struct TreeNode* root) {
        BSTIterator* iterator = (BSTIterator*)malloc(sizeof(BSTIterator));
        iterator->nodes = (int*)malloc(100000 * sizeof(int));  // Maximum number of nodes
        iterator->index = 0;
        iterator->size = 0;  // Initialize the size to 0
    
        // Fill the nodes array using inOrder traversal
        inOrder(root, iterator->nodes, &(iterator->size));
    
        return iterator;
    }
    
    int bSTIteratorNext(BSTIterator* obj) {
        return obj->nodes[obj->index++];
    }
    
    bool bSTIteratorHasNext(BSTIterator* obj) {
        return obj->index < obj->size;
    }
    
    void bSTIteratorFree(BSTIterator* obj) {
        free(obj->nodes);
        free(obj);
    }
    
    /**
     * Your BSTIterator struct will be instantiated and called as such:
     * BSTIterator* obj = bSTIteratorCreate(root);
     * int param_1 = bSTIteratorNext(obj);
     * bool param_2 = bSTIteratorHasNext(obj);
     * bSTIteratorFree(obj);
     */
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
  • 相关阅读:
    Maglev: 一种快速可靠的负载均衡器
    静态成员变量和成员函数
    【云原生&微服务>SCG网关篇六】Spring Cloud Gateway内置的18种Filter使用姿势
    【Vue框架】vue路由导航守卫
    不下载软件,可以把电脑本地文件快速传到远端服务器里吗?
    火星探测器背后的人工智能:从原理到实战的强化学习
    CF1381D The Majestic Brown Tree Snake
    Maven配置阿里云中央仓库settings.xml
    安卓调用onnx模型并计算
    Linux arm64 set_memory_ro/rw函数
  • 原文地址:https://blog.csdn.net/navicheung/article/details/132798852