代码中的加锁操作因为涉及内核态的上下文切换会比较耗时、代价比较高。针对基本数据类型我们还可以使用原子操作来保证并发安全,因为原子操作是Go语言提供的方法它在用户态就可以完成,因此性能比加锁操作更好。Go语言中原子操作由内置的标准库sync/atomic提供。
方法 解释
func LoadInt32(addr int32) (val int32)
func LoadInt64(addr int64) (val int64)
) (val unsafe.Pointer) 读取操作
func LoadUint32(addruint32) (val uint32)
func LoadUint64(addruint64) (val uint64)
func LoadUintptr(addruintptr) (val uintptr)
func LoadPointer(addrunsafe.Pointer
func StoreInt32(addr *int32, val int32)
func StoreInt64(addr *int64, val int64)
func StoreUint32(addr *uint32, val uint32)
func StoreUint64(addr *uint64, val uint64)
func StoreUintptr(addr *uintptr, val uintptr)
func StorePointer(addr *unsafe.Pointer, val unsafe.Pointer) 写入操作
func AddInt32(addr *int32, delta int32) (new int32)
func AddInt64(addr *int64, delta int64) (new int64)
func AddUint32(addr *uint32, delta uint32) (new uint32)
func AddUint64(addr *uint64, delta uint64) (new uint64)
func AddUintptr(addr *uintptr, delta uintptr) (new uintptr) 修改操作
func SwapInt32(addr *int32, new int32) (old int32)
func SwapInt64(addr *int64, new int64) (old int64)
func SwapUint32(addr *uint32, new uint32) (old uint32)
func SwapUint64(addr *uint64, new uint64) (old uint64)
func SwapUintptr(addr *uintptr, new uintptr) (old uintptr)
func SwapPointer(addr *unsafe.Pointer, new unsafe.Pointer) (old unsafe.Pointer) 交换操作
func CompareAndSwapInt32(addr *int32, old, new int32) (swapped bool)
func CompareAndSwapInt64(addr *int64, old, new int64) (swapped bool)
func CompareAndSwapUint32(addr *uint32, old, new uint32) (swapped bool)
func CompareAndSwapUint64(addr *uint64, old, new uint64) (swapped bool)
func CompareAndSwapUintptr(addr *uintptr, old, new uintptr) (swapped bool)
func CompareAndSwapPointer(addr *unsafe.Pointer, old, new unsafe.Pointer) (swapped bool)
我们填写一个示例来比较下互斥锁和原子操作的性能。
var x int64
var l sync.Mutex
var wg sync.WaitGroup
// 普通版加函数
func add() {
// x = x + 1
x++ // 等价于上面的操作
wg.Done()
}
// 互斥锁版加函数
func mutexAdd() {
l.Lock()
x++
l.Unlock()
wg.Done()
}
// 原子操作版加函数
func atomicAdd() {
atomic.AddInt64(&x, 1)
wg.Done()
}
func main() {
start := time.Now()
for i := 0; i < 10000; i++ {
wg.Add(1)
// go add() // 普通版add函数 不是并发安全的
// go mutexAdd() // 加锁版add函数 是并发安全的,但是加锁性能开销大
go atomicAdd() // 原子操作版add函数 是并发安全,性能优于加锁版
}
wg.Wait()
end := time.Now()
fmt.Println(x)
fmt.Println(end.Sub(start))
}
atomic包提供了底层的原子级内存操作,对于同步算法的实现很有用。这些函数必须谨慎地保证正确使用。除了某些特殊的底层应用,使用通道或者sync包的函数/类型实现同步更好。