来到第六天,开始了一块新内容:完全背包
有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。01背包和完全背包不同就是体现在遍历顺序上。
- # 先遍历物品,再遍历背包
- def test_CompletePack():
- weight = [1, 3, 4]
- value = [15, 20, 30]
- bagWeight = 4
- dp = [0] * (bagWeight + 1)
- for i in range(len(weight)): # 遍历物品
- for j in range(weight[i], bagWeight + 1): # 遍历背包容量
- dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
- print(dp[bagWeight])
-
- test_CompletePack()
-
-
- # 先遍历背包,再遍历物品
- def test_CompletePack():
- weight = [1, 3, 4]
- value = [15, 20, 30]
- bagWeight = 4
-
- dp = [0] * (bagWeight + 1)
-
- for j in range(bagWeight + 1): # 遍历背包容量
- for i in range(len(weight)): # 遍历物品
- if j - weight[i] >= 0:
- dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
-
- print(dp[bagWeight])
-
- test_CompletePack()
You are given an integer array
coins
representing coins of different denominations and an integeramount
representing a total amount of money.Return the number of combinations that make up that amount. If that amount of money cannot be made up by any combination of the coins, return
0
.You may assume that you have an infinite number of each kind of coin.
The answer is guaranteed to fit into a signed 32-bit integer.
动规五部曲:
- class Solution:
- def change(self, amount: int, coins: List[int]) -> int:
- dp = [0]*(amount + 1)
- dp[0] = 1
- for i in range(len(coins)):
- for j in range(coins[i], amount + 1):
- dp[j] += dp[j - coins[i]]
- return dp[amount]
Given an array of distinct integers
nums
and a target integertarget
, return the number of possible combinations that add up totarget
.The test cases are generated so that the answer can fit in a 32-bit integer.
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
如果把遍历nums(物品)放在外循环,遍历target的作为内循环的话,举一个例子:计算dp[4]的时候,结果集只有 {1,3} 这样的集合,不会有{3,1}这样的集合,因为nums遍历放在外层,3只能出现在1后面!
所以本题遍历顺序最终遍历顺序:target(背包)放在外循环,将nums(物品)放在内循环,内循环从前到后遍历。
- class Solution:
- def combinationSum4(self, nums: List[int], target: int) -> int:
- dp = [0] * (target + 1)
- dp[0] = 1
- for i in range(1, target + 1):
- for j in range(len(nums)):
- if i - nums[j] >= 0:
- dp[i] += dp[i - nums[j]]
- return dp[target]