• 代码随想录算法训练营Day44 | 动态规划(6/17) 完全背包理论基础 LeetCode 518. 零钱兑换 II 377. 组合总和 Ⅳ


    来到第六天,开始了一块新内容:完全背包

    1. 完全背包理论基础


    有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。

    完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。01背包和完全背包不同就是体现在遍历顺序上。

    1. # 先遍历物品,再遍历背包
    2. def test_CompletePack():
    3. weight = [1, 3, 4]
    4. value = [15, 20, 30]
    5. bagWeight = 4
    6. dp = [0] * (bagWeight + 1)
    7. for i in range(len(weight)): # 遍历物品
    8. for j in range(weight[i], bagWeight + 1): # 遍历背包容量
    9. dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
    10. print(dp[bagWeight])
    11. test_CompletePack()
    12. # 先遍历背包,再遍历物品
    13. def test_CompletePack():
    14. weight = [1, 3, 4]
    15. value = [15, 20, 30]
    16. bagWeight = 4
    17. dp = [0] * (bagWeight + 1)
    18. for j in range(bagWeight + 1): # 遍历背包容量
    19. for i in range(len(weight)): # 遍历物品
    20. if j - weight[i] >= 0:
    21. dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
    22. print(dp[bagWeight])
    23. test_CompletePack()

    2. 练习题

    第一题

    518. Coin Change II

    You are given an integer array coins representing coins of different denominations and an integer amount representing a total amount of money.

    Return the number of combinations that make up that amount. If that amount of money cannot be made up by any combination of the coins, return 0.

    You may assume that you have an infinite number of each kind of coin.

    The answer is guaranteed to fit into a signed 32-bit integer.

    动规五部曲:

    • 确定dp数组以及下标的含义
      • dp[j]:凑成总金额j的货币组合数为dp[j]
    • 确定递推公式
      • dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。所以递推公式:dp[j] += dp[j - coins[i]];
    • dp数组如何初始化
      • 首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。
    • 确定遍历顺序
      • 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)。
    • 举例推导dp数组
    1. class Solution:
    2. def change(self, amount: int, coins: List[int]) -> int:
    3. dp = [0]*(amount + 1)
    4. dp[0] = 1
    5. for i in range(len(coins)):
    6. for j in range(coins[i], amount + 1):
    7. dp[j] += dp[j - coins[i]]
    8. return dp[amount]

    第二题

    377. Combination Sum IV

    Given an array of distinct integers nums and a target integer target, return the number of possible combinations that add up to target.

    The test cases are generated so that the answer can fit in a 32-bit integer.

    如果求组合数就是外层for循环遍历物品,内层for遍历背包

    如果求排列数就是外层for遍历背包,内层for循环遍历物品

    如果把遍历nums(物品)放在外循环,遍历target的作为内循环的话,举一个例子:计算dp[4]的时候,结果集只有 {1,3} 这样的集合,不会有{3,1}这样的集合,因为nums遍历放在外层,3只能出现在1后面!

    所以本题遍历顺序最终遍历顺序:target(背包)放在外循环,将nums(物品)放在内循环,内循环从前到后遍历

    1. class Solution:
    2. def combinationSum4(self, nums: List[int], target: int) -> int:
    3. dp = [0] * (target + 1)
    4. dp[0] = 1
    5. for i in range(1, target + 1):
    6. for j in range(len(nums)):
    7. if i - nums[j] >= 0:
    8. dp[i] += dp[i - nums[j]]
    9. return dp[target]
  • 相关阅读:
    苹果macOS Sonoma 14正式版 “黑苹果”且用且珍惜
    Shipping mode --为省电而生
    进程控制的一些具体操作
    ubuntu20.04升级到22.04
    雅思口语 23九月换题季最新考题答案
    OpenHarmony 4.0 实战开发——分布式软总线解析:设备发现与传输
    Android应用内组件通讯之EventBus源码分析之post流程(三)
    SLAM从入门到精通(从仿真到实践)
    【小沐学NLP】Python实现聊天机器人(OpenAI,模型概述笔记)
    通过虚拟机搭建个人NAS
  • 原文地址:https://blog.csdn.net/Hanzq1997/article/details/132838003