• C# Onnx Yolov8 Seg 分割


    目录

    效果

    模型信息

    项目

    代码

    下载 


    效果

    模型信息

    Model Properties
    -------------------------
    date:2023-09-07T17:11:46.798385
    description:Ultralytics YOLOv8n-seg model trained on coco.yaml
    author:Ultralytics
    task:segment
    license:AGPL-3.0 https://ultralytics.com/license
    version:8.0.172
    stride:32
    batch:1
    imgsz:[640, 640]
    names:{0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}
    ---------------------------------------------------------------

    Inputs
    -------------------------
    name:images
    tensor:Float[1, 3, 640, 640]
    ---------------------------------------------------------------

    Outputs
    -------------------------
    name:output0
    tensor:Float[1, 116, 8400]
    name:output1
    tensor:Float[1, 32, 160, 160]
    ---------------------------------------------------------------

    项目

    代码

    // 图片缩放
    image = new Mat(image_path);
    int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
    Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
    Rect roi = new Rect(0, 0, image.Cols, image.Rows);
    image.CopyTo(new Mat(max_image, roi));

    float[] det_result_array = new float[8400 * 116];
    float[] proto_result_array = new float[32 * 160 * 160];
    float[] factors = new float[4];
    factors[0] = factors[1] = (float)(max_image_length / 640.0);
    factors[2] = image.Rows;
    factors[3] = image.Cols;

    // 将图片转为RGB通道
    Mat image_rgb = new Mat();
    Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
    Mat resize_image = new Mat();
    Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));

    // 输入Tensor
    // input_tensor = new DenseTensor(new[] { 1, 3, 640, 640 });
    for (int y = 0; y < resize_image.Height; y++)
    {
        for (int x = 0; x < resize_image.Width; x++)
        {
            input_tensor[0, 0, y, x] = resize_image.At(y, x)[0] / 255f;
            input_tensor[0, 1, y, x] = resize_image.At(y, x)[1] / 255f;
            input_tensor[0, 2, y, x] = resize_image.At(y, x)[2] / 255f;
        }
    }

    //将 input_tensor 放入一个输入参数的容器,并指定名称
    input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));

    dt1 = DateTime.Now;
    //运行 Inference 并获取结果
    result_infer = onnx_session.Run(input_ontainer);
    dt2 = DateTime.Now;

    1. using Microsoft.ML.OnnxRuntime;
    2. using Microsoft.ML.OnnxRuntime.Tensors;
    3. using OpenCvSharp;
    4. using System;
    5. using System.Collections.Generic;
    6. using System.ComponentModel;
    7. using System.Data;
    8. using System.Drawing;
    9. using System.Linq;
    10. using System.Text;
    11. using System.Windows.Forms;
    12. using static System.Net.Mime.MediaTypeNames;
    13. namespace Onnx_Yolov8_Demo
    14. {
    15. public partial class Form1 : Form
    16. {
    17. public Form1()
    18. {
    19. InitializeComponent();
    20. }
    21. string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
    22. string image_path = "";
    23. string startupPath;
    24. string classer_path;
    25. DateTime dt1 = DateTime.Now;
    26. DateTime dt2 = DateTime.Now;
    27. string model_path;
    28. Mat image;
    29. SegmentationResult result_pro;
    30. Mat result_image;
    31. SessionOptions options;
    32. InferenceSession onnx_session;
    33. Tensor<float> input_tensor;
    34. List<NamedOnnxValue> input_ontainer;
    35. IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
    36. DisposableNamedOnnxValue[] results_onnxvalue;
    37. Tensor<float> result_tensors_det;
    38. Tensor<float> result_tensors_proto;
    39. private void button1_Click(object sender, EventArgs e)
    40. {
    41. OpenFileDialog ofd = new OpenFileDialog();
    42. ofd.Filter = fileFilter;
    43. if (ofd.ShowDialog() != DialogResult.OK) return;
    44. pictureBox1.Image = null;
    45. image_path = ofd.FileName;
    46. pictureBox1.Image = new Bitmap(image_path);
    47. textBox1.Text = "";
    48. image = new Mat(image_path);
    49. pictureBox2.Image = null;
    50. }
    51. private void button2_Click(object sender, EventArgs e)
    52. {
    53. if (image_path == "")
    54. {
    55. return;
    56. }
    57. // 配置图片数据
    58. image = new Mat(image_path);
    59. int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
    60. Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
    61. Rect roi = new Rect(0, 0, image.Cols, image.Rows);
    62. image.CopyTo(new Mat(max_image, roi));
    63. float[] det_result_array = new float[8400 * 116];
    64. float[] proto_result_array = new float[32 * 160 * 160];
    65. float[] factors = new float[4];
    66. factors[0] = factors[1] = (float)(max_image_length / 640.0);
    67. factors[2] = image.Rows;
    68. factors[3] = image.Cols;
    69. // 将图片转为RGB通道
    70. Mat image_rgb = new Mat();
    71. Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
    72. Mat resize_image = new Mat();
    73. Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));
    74. // 输入Tensor
    75. // input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
    76. for (int y = 0; y < resize_image.Height; y++)
    77. {
    78. for (int x = 0; x < resize_image.Width; x++)
    79. {
    80. input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
    81. input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
    82. input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
    83. }
    84. }
    85. //input_tensor 放入一个输入参数的容器,并指定名称
    86. input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));
    87. dt1 = DateTime.Now;
    88. //运行 Inference 并获取结果
    89. result_infer = onnx_session.Run(input_ontainer);
    90. dt2 = DateTime.Now;
    91. // 将输出结果转为DisposableNamedOnnxValue数组
    92. results_onnxvalue = result_infer.ToArray();
    93. // 读取第一个节点输出并转为Tensor数据
    94. result_tensors_det = results_onnxvalue[0].AsTensor<float>();
    95. result_tensors_proto = results_onnxvalue[1].AsTensor<float>();
    96. det_result_array = result_tensors_det.ToArray();
    97. proto_result_array = result_tensors_proto.ToArray();
    98. resize_image.Dispose();
    99. image_rgb.Dispose();
    100. result_pro = new SegmentationResult(classer_path, factors);
    101. result_image = result_pro.draw_result(result_pro.process_result(det_result_array, proto_result_array), image.Clone());
    102. if (!result_image.Empty())
    103. {
    104. pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
    105. textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
    106. }
    107. else
    108. {
    109. textBox1.Text = "无信息";
    110. }
    111. }
    112. private void Form1_Load(object sender, EventArgs e)
    113. {
    114. startupPath = System.Windows.Forms.Application.StartupPath;
    115. model_path = startupPath + "\\yolov8n-seg.onnx";
    116. classer_path = startupPath + "\\yolov8-detect-lable.txt";
    117. // 创建输出会话,用于输出模型读取信息
    118. options = new SessionOptions();
    119. options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
    120. // 设置为CPU上运行
    121. options.AppendExecutionProvider_CPU(0);
    122. // 创建推理模型类,读取本地模型文件
    123. onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
    124. // 输入Tensor
    125. input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
    126. // 创建输入容器
    127. input_ontainer = new List<NamedOnnxValue>();
    128. }
    129. }
    130. }

    下载 

    完整Demo下载

    exe程序下载

  • 相关阅读:
    【Web3 系列开发教程——创建你的第一个 NFT(2)】NFT 历史回溯
    Hadoop-HDFS分布式文件系统基础
    JavaScript小技能: 应用程序接口
    中间件安全-CVE复现&Weblogic&Jenkins&GlassFish漏洞复现
    2.可视化基础(上)
    你知道哪几种Java锁?分别有什么特点?
    vue案例
    Qt4升级到Qt5中文乱码问题的解决
    七大排序算法
    【单调栈】739. 每日温度、496. 下一个更大元素 I
  • 原文地址:https://blog.csdn.net/lw112190/article/details/132800530