使用pytorch实现了2层卷积神经网络,包含有batchnorm层。
在测试阶段需要model.eval(),使用移动平均值和方差代替训练过程中的均值和方差。
- import torch
- import torch.nn as nn
- import torchvision
- import torchvision.transforms as transforms
-
-
- # Device configuration
- device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
-
- # Hyper parameters
- num_epochs = 5
- num_classes = 10
- batch_size = 100
- learning_rate = 0.001
-
- # MNIST dataset
- train_dataset = torchvision.datasets.MNIST(root='../../data/',
- train=True,
- transform=transforms.ToTensor(),
- download=True)
-
- test_dataset = torchvision.datasets.MNIST(root='../../data/',
- train=False,
- transform=transforms.ToTensor())
-
- # Data loader
- train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
- batch_size=batch_size,
- shuffle=True)
-
- test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
- batch_size=batch_size,
- shuffle=False)
-
- # Convolutional neural network (two convolutional layers)
- class ConvNet(nn.Module):
- def __init__(self, num_classes=10):
- super(ConvNet, self).__init__()
- self.layer1 = nn.Sequential(
- nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
- nn.BatchNorm2d(16),
- nn.ReLU(),
- nn.MaxPool2d(kernel_size=2, stride=2))
- self.layer2 = nn.Sequential(
- nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
- nn.BatchNorm2d(32),
- nn.ReLU(),
- nn.MaxPool2d(kernel_size=2, stride=2))
- self.fc = nn.Linear(7*7*32, num_classes)
-
- def forward(self, x):
- out = self.layer1(x)
- out = self.layer2(out)
- out = out.reshape(out.size(0), -1)
- out = self.fc(out)
- return out
-
- model = ConvNet(num_classes).to(device)
-
- # Loss and optimizer
- criterion = nn.CrossEntropyLoss()
- optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
-
- # Train the model
- total_step = len(train_loader)
- for epoch in range(num_epochs):
- for i, (images, labels) in enumerate(train_loader):
- images = images.to(device)
- labels = labels.to(device)
-
- # Forward pass
- outputs = model(images)
- loss = criterion(outputs, labels)
-
- # Backward and optimize
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- if (i+1) % 100 == 0:
- print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
- .format(epoch+1, num_epochs, i+1, total_step, loss.item()))
-
- # Test the model
- model.eval() # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance)
- with torch.no_grad():
- correct = 0
- total = 0
- for images, labels in test_loader:
- images = images.to(device)
- labels = labels.to(device)
- outputs = model(images)
- _, predicted = torch.max(outputs.data, 1)
- total += labels.size(0)
- correct += (predicted == labels).sum().item()
-
- print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
-
- # Save the model checkpoint
- torch.save(model.state_dict(), 'model.ckpt')