1. What is pandas?
pandas main page
pandas installation instructions
Anaconda distribution of Python (includes pandas)
How to use the IPython/Jupyter notebook
2. How do I read a tabular data file into pandas?
user_cols = ['user_id', 'age', 'gender', 'occupation', 'zip_code']
users = pd.read_table('http://bit.ly/movieusers', sep='|', header=None, names=user_cols)
3. How do I select a pandas Series from a DataFrame?
# select the 'City' Series using bracket notation
ufo['City']
# or equivalently, use dot notation
ufo.City
ufo['Location'] = ufo.City + ', ' + ufo.State
4. Why do some pandas commands end with parentheses
movies.head()
movies.columns
movies.describe()
movies.shape
movies.dtypes
# use an optional parameter to the describe method to summarize only 'object' columns
movies.describe(include=['object'])
5. How do I rename columns in a pandas DataFrame?
ufo.rename(columns={'Colors Reported':'Colors_Reported', 'Shape Reported':'Shape_Reported'}, inplace=True)
ufo_cols = ['city', 'colors reported', 'shape reported', 'state', 'time']
ufo.columns = ufo_cols
# replace the column names during the file reading process by using the 'names' parameter
ufo = pd.read_csv('http://bit.ly/uforeports', header=0, names=ufo_cols)
ufo.columns = ufo.columns.str.replace(' ', '_')
6. How do I remove columns from a pandas DataFrame?
# remove a single column (axis=1 refers to columns)
ufo.drop('Colors Reported', axis=1, inplace=True)
# remove multiple columns at once
ufo.drop(['City', 'State'], axis=1, inplace=True)
# remove multiple rows at once (axis=0 refers to rows)
ufo.drop([0, 1], axis=0, inplace=True)
7. How do I sort a pandas DataFrame or a Series?
movies.title.sort_values().head()
movies.title.sort_values(ascending=False).head()
movies.sort_values('title').head()
movies.sort_values('title', ascending=False).head()
movies.sort_values(['content_rating', 'duration']).head()
8. How do I filter rows of a pandas DataFrame by column value?
# select the 'genre' Series from the filtered DataFrame
movies[movies.duration >= 200].genre
# or equivalently, use the 'loc' method
movies.loc[movies.duration >= 200, 'genre']
9. How do I apply multiple filter criteria to a pandas DataFrame?
movies[(movies.duration >=200) & (movies.genre == 'Drama')]
movies[(movies.genre == 'Crime') | (movies.genre == 'Drama') | (movies.genre == 'Action')]
movies[movies.genre.isin(['Crime', 'Drama', 'Action'])]
10. Your pandas questions answered!
# specify which columns to include by name
ufo = pd.read_csv('http://bit.ly/uforeports', usecols=['City', 'State'])
# or equivalently, specify columns by position
ufo = pd.read_csv('http://bit.ly/uforeports', usecols=[0, 4])
ufo = pd.read_csv('http://bit.ly/uforeports', nrows=3)
# various methods are available to iterate through a DataFrame
for index, row in ufo.iterrows():
print(index, row.City, row.State)
# only include numeric columns in the DataFrame
import numpy as np
drinks.select_dtypes(include=[np.number]).dtypes
drinks.describe(include='all')
drinks.describe(include=['object', 'float64'])
11. How do I use the "axis" parameter in pandas?
When performing a mathematical operation with the axis parameter:
axis 0 means the operation should "move down" the row axis
axis 1 means the operation should "move across" the column axis
# 'index' is an alias for axis 0
drinks.mean(axis='index')
# 'columns' is an alias for axis 1
drinks.mean(axis='columns')
12. How do I use string methods in pandas?
# string methods for pandas Series are accessed via 'str'
orders.item_name.str.upper()
orders[orders.item_name.str.contains('Chicken')]
orders.choice_description.str.replace('[', '').str.replace(']', '')
# many pandas string methods support regular expressions (regex)
orders.choice_description.str.replace('[
13. How do I change the data type of a pandas Series?
# change the data type of an existing Series
drinks['beer_servings'] = drinks.beer_servings.astype(float)
drinks = pd.read_csv('http://bit.ly/drinksbycountry', dtype={'beer_servings':float})
14. When should I use a "groupby" in pandas?
drinks.groupby('continent').beer_servings.mean()
drinks.groupby('continent').beer_servings.agg(['count', 'mean', 'min', 'max'])
drinks.groupby('continent').mean().plot(kind='bar')
15. How do I explore a pandas Series?
movies.genre.value_counts()
# display percentages instead of raw counts
movies.genre.value_counts(normalize=True)
movies.genre.unique()
# count the number of unique values in the Series
movies.genre.nunique()
# compute a cross-tabulation of two Series
pd.crosstab(movies.genre, movies.content_rating)
movies.genre.value_counts().plot(kind='bar')
16. How do I handle missing values in pandas?
What does "NaN" mean?
"NaN" is not a string, rather it's a special value: numpy.nan.
It stands for "Not a Number" and indicates a missing value.
read_csv detects missing values (by default) when reading the file, and replaces them with this special value.
ufo.isnull()
ufo.notnull()
# count the number of missing values in each Series
ufo.isnull().sum()
How to handle missing values depends on the dataset as well as the nature of your analysis. Here are some options:
ufo.shape
# if 'any' values are missing in a row, then drop that row
ufo.dropna(how='any').shape
# if 'all' values are missing in a row, then drop that row (none are dropped in this case)
ufo.dropna(how='all').shape
# if 'any' values are missing in a row (considering only 'City' and 'Shape Reported'), then drop that row
ufo.dropna(subset=['City', 'Shape Reported'], how='any').shape
# if 'all' values are missing in a row (considering only 'City' and 'Shape Reported'), then drop that row
ufo.dropna(subset=['City', 'Shape Reported'], how='all').shape
# 'value_counts' does not include missing values by default
ufo['Shape Reported'].value_counts().head()
# explicitly include missing values
ufo['Shape Reported'].value_counts(dropna=False).head()
# fill in missing values with a specified value
ufo['Shape Reported'].fillna(value='VARIOUS', inplace=True)
17. What do I need to know about the pandas index?
# set an existing column as the index
drinks.set_index('country', inplace=True)
# country name can now be used for selection
drinks.loc['Brazil', 'beer_servings']
# index name is optional
drinks.index.name = None
# restore the index name, and move the index back to a column
drinks.index.name = 'country'
drinks.reset_index(inplace=True)
18. What do I need to know about the pandas index?
drinks.continent.value_counts().sort_index()
drinks.continent.value_counts()['Africa']
people = pd.Series([3000000, 85000], index=['Albania', 'Andorra'], name='population')
# calculate the total annual beer servings for each country
(drinks.beer_servings * people).head()
The two Series were aligned by their indexes.
If a value is missing in either Series, the result is marked as NaN.
Alignment enables us to easily work with incomplete data.
# concatenate the 'drinks' DataFrame with the 'population' Series (aligns by the index)
pd.concat([drinks, people], axis=1).head()
19. How do I select multiple rows and columns from a pandas DataFrame?
The loc method is used to select rows and columns by label. You can pass it:
A single label
A list of labels
A slice of labels
A boolean Series
A colon (which indicates "all labels")
The iloc method is used to select rows and columns by integer position. You can pass it:
A single integer position
A list of integer positions
A slice of integer positions
A colon (which indicates "all integer positions")
drinks = pd.read_csv('http://bit.ly/drinksbycountry', index_col='country')
20. When should I use the "inplace" parameter in pandas?
ufo.drop('City', axis=1, inplace=True)
21. How do I make my pandas DataFrame smaller and faster?
drinks.info()
drinks.info(memory_usage='deep')
drinks.memory_usage(deep=True)
# use the 'category' data type (new in pandas 0.15) to store the 'continent' strings as integers
drinks['continent'] = drinks.continent.astype('category')
df['quality'] = df.quality.astype('category', categories=['good', 'very good', 'excellent'], ordered=True)
# comparison operators work with ordered categories
df.loc[df.quality > 'good', :]
22. How do I use pandas with scikit-learn to create Kaggle submissions?
23. More of your pandas questions answered!
ufo.sample(n=3)
ufo.sample(n=3, random_state=42)
# sample 75% of the DataFrame's rows without replacement
train = ufo.sample(frac=0.75, random_state=99)
# store the remaining 25% of the rows in another DataFrame
test = ufo.loc[~ufo.index.isin(train.index), :]
24. How do I create dummy variables in pandas?
# create the 'Sex_male' dummy variable using the 'map' method
train['Sex_male'] = train.Sex.map({'female':0, 'male':1})
# alternative: use 'get_dummies' to create one column for every possible value
pd.get_dummies(train.Sex)
Generally speaking:
If you have "K" possible values for a categorical feature, you only need "K-1" dummy variables to capture all of the information about that feature.
One convention is to drop the first dummy variable, which defines that level as the "baseline".
# add a prefix to identify the source of the dummy variables
pd.get_dummies(train.Sex, prefix='Sex').iloc[:, 1:].head()
# use 'get_dummies' with a feature that has 3 possible values
pd.get_dummies(train.Embarked, prefix='Embarked').head(10)
# drop the first dummy variable ('C')
pd.get_dummies(train.Embarked, prefix='Embarked').iloc[:, 1:].head(10)
25.How do I work with dates and times in pandas?
ufo['Time'] = pd.to_datetime(ufo.Time)
ufo.Time.dt.hour
ufo.Time.dt.weekday_name
ufo.Time.dt.dayofyear
# convert a single string to datetime format (outputs a timestamp object)
ts = pd.to_datetime('1/1/1999')
# perform mathematical operations with timestamps (outputs a timedelta object)
ufo.Time.max() - ufo.Time.min()
26. How do I find and remove duplicate rows in pandas?
# read a dataset of movie reviewers into a DataFrame
user_cols = ['user_id', 'age', 'gender', 'occupation', 'zip_code']
users = pd.read_table('http://bit.ly/movieusers', sep='|', header=None, names=user_cols, index_col='user_id')
# detect duplicate zip codes: True if an item is identical to a previous item
users.zip_code.duplicated()
# count the duplicate rows
users.duplicated().sum()
27. How do I avoid a SettingWithCopyWarning in pandas?
Solution: Any time you are attempting to create a DataFrame copy, use the copy method.
28. How do I change display options in pandas?
# check the current setting for the 'max_rows' option
pd.get_option('display.max_rows')
# overwrite the current setting so that all rows will be displayed
pd.set_option('display.max_rows', None)
# reset the 'max_rows' option to its default
pd.reset_option('display.max_rows')
# the 'max_columns' option is similar to 'max_rows'
pd.get_option('display.max_columns')
# overwrite the current setting so that more characters will be displayed
pd.set_option('display.max_colwidth', 1000)
# overwrite the 'precision' setting to display 2 digits after the decimal point of 'Fare'
pd.set_option('display.precision', 2)
# use a Python format string to specify a comma as the thousands separator
pd.set_option('display.float_format', '{:,}'.format)
29. How do I create a pandas DataFrame from another object?
# optionally specify the order of columns and define the index
df = pd.DataFrame({'id':[100, 101, 102], 'color':['red', 'blue', 'red']}, columns=['id', 'color'], index=['a', 'b', 'c'])
# create a DataFrame from a list of lists (each inner list becomes a row)
pd.DataFrame([[100, 'red'], [101, 'blue'], [102, 'red']], columns=['id', 'color'])
arr = np.random.rand(4, 2)
pd.DataFrame(arr, columns=['one', 'two'])
# create a DataFrame of student IDs (100 through 109) and test scores (random integers between 60 and 100)
pd.DataFrame({'student':np.arange(100, 110, 1), 'test':np.random.randint(60, 101, 10)})
# 'set_index' can be chained with the DataFrame constructor to select an index
pd.DataFrame({'student':np.arange(100, 110, 1), 'test':np.random.randint(60, 101, 10)}).set_index('student')
# create a new Series using the Series constructor
s = pd.Series(['round', 'square'], index=['c', 'b'], name='shape')
30. How do I apply a function to a pandas Series or DataFrame?
# map 'female' to 0 and 'male' to 1
train['Sex_num'] = train.Sex.map({'female':0, 'male':1})
# calculate the length of each string in the 'Name' Series
train['Name_length'] = train.Name.apply(len)
# round up each element in the 'Fare' Series to the next integer
import numpy as np
train['Fare_ceil'] = train.Fare.apply(np.ceil)
# alternatively, use a lambda function
train.Name.str.split(',').apply(lambda x: x[0]).head()
# convert every DataFrame element into a float
drinks.loc[:, 'beer_servings':'wine_servings'].applymap(float)