• 【设计模式】一、设计模式七大原则


    设计模式概述

    1. 有请使用 UML 类图画出原型模式核心角色
    2. 原型设计模式的深拷贝和浅拷贝是什么,并写出深拷贝的两种方式的源码(重写 clone 方法实现深拷贝、使用序列化来实现深拷贝)
    3. 在 Spring 框架中哪里使用到原型模式,并对源码进行分析
    
    <bean id="id01" class="com.atguigu.spring.bean.Monster" scope="prototype"/>
    
    • 1
    • 2
    1. Spring 中原型 bean 的创建,就是原型模式的应用
    2. 代码分析+Debug 源码

    设计模式七大原则

    设计模式的目的

    1. 代码重用性 (即:相同功能的代码,不用多次编写)
    2. 可读性 (即:编程规范性, 便于其他程序员的阅读和理解)
    3. 可扩展性 (即:当需要增加新的功能时,非常的方便,称为可维护)
    4. 可靠性 (即:当我们增加新的功能后,对原来的功能没有影响)
    5. 使程序呈现高内聚,低耦合的特性

    设计模式七大原则

    1. 单一职责原则

    一个类应该只负责一项职责

    示例

    public class SingleResponsibility1 {
    
    	public static void main(String[] args) {
    		// TODO Auto-generated method stub
    		Vehicle vehicle = new Vehicle();
    		vehicle.run("摩托车");
    		vehicle.run("汽车");
    		vehicle.run("飞机");
    	}
    
    }
    
    // 交通工具类
    // 方式1
    // 1. 在方式1 的run方法中,违反了单一职责原则
    // 2. 解决的方案非常的简单,根据交通工具运行方法不同,分解成不同类即可
    class Vehicle {
    	public void run(String vehicle) {
    		System.out.println(vehicle + " 在公路上运行....");
    	}
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    public class SingleResponsibility2 {
    
    	public static void main(String[] args) {
    		// TODO Auto-generated method stub
    		RoadVehicle roadVehicle = new RoadVehicle();
    		roadVehicle.run("摩托车");
    		roadVehicle.run("汽车");
    		
    		AirVehicle airVehicle = new AirVehicle();
    		
    		airVehicle.run("飞机");
    	}
    
    }
    
    //方案2的分析
    //1. 遵守单一职责原则
    //2. 但是这样做的改动很大,即将类分解,同时修改客户端
    //3. 改进:直接修改Vehicle 类,改动的代码会比较少=>方案3
    
    class RoadVehicle {
    	public void run(String vehicle) {
    		System.out.println(vehicle + "公路运行");
    	}
    }
    
    class AirVehicle {
    	public void run(String vehicle) {
    		System.out.println(vehicle + "天空运行");
    	}
    }
    
    class WaterVehicle {
    	public void run(String vehicle) {
    		System.out.println(vehicle + "水中运行");
    	}
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    public class SingleResponsibility3 {
    
    	public static void main(String[] args) {
    		// TODO Auto-generated method stub
    		Vehicle2 vehicle2  = new Vehicle2();
    		vehicle2.run("汽车");
    		vehicle2.runWater("轮船");
    		vehicle2.runAir("飞机");
    	}
    
    }
    
    
    //方式3的分析
    //1. 这种修改方法没有对原来的类做大的修改,只是增加方法
    //2. 这里虽然没有在类这个级别上遵守单一职责原则,但是在方法级别上,仍然是遵守单一职责
    class Vehicle2 {
    	public void run(String vehicle) {
    		//处理
    		
    		System.out.println(vehicle + " 在公路上运行....");
    		
    	}
    	
    	public void runAir(String vehicle) {
    		System.out.println(vehicle + " 在天空上运行....");
    	}
    	
    	public void runWater(String vehicle) {
    		System.out.println(vehicle + " 在水中行....");
    	}
    	
    	//方法2.
    	//..
    	//..
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    1. 降低类的复杂度,一个类只负责一项职责。
    2. 提高类的可读性,可维护性
    3. 降低变更引起的风险
    4. 通常情况下,我们应当遵守单一职责原则,只有逻辑足够简单,才可以在代码级违反单一职责原则;只有类中
    5. 方法数量足够少,可以在方法级别保持单一职责原则

    2. 接口隔离原则

    一个类对另一个类的依赖应该建立在最小的接口

    示例:

    类 A 通过接口 Interface1 依赖类 B,类 C 通过接口 Interface1 依赖类 D,如果接口 Interface1 对于类 A 和类 C来说不是最小接口,那么类 B 和类 D 必须去实现他们不需要的方法。
    按隔离原则应当这样处理:(重点)
    接口 Interface1 拆分为独立的几个接口(这里我们拆分成 3 个接口),类 A 和类 C 分别与他们需要的接口建立依赖关系。也就是采用接口隔离原则

    3. 依赖倒转(倒置)原则

    1)高层模块不应该依赖低层模块,二者都应该依赖其抽象
    2)抽象不应该依赖细节,细节应该依赖抽象
    3)依赖倒转(倒置)的中心思想是面向接口编程
    4)依赖倒转原则是基于这样的设计理念:相对于细节的多变性,抽象的东西要稳定的多。以抽象为基础搭建的架
    构比以细节为基础的架构要稳定的多。在 java 中,抽象指的是接口或抽象类,细节就是具体的实现类
    5)使用接口或抽象类的目的是制定好规范,而不涉及任何具体的操作,把展现细节的任务交给他们的实现类去完成

    三种传递方式:

    1. 接口传递
    2. 构造方法传递
    3. setter 方式传递
    //实现对接口的依赖
    public class DependecyInversion {
    
    	public static void main(String[] args) {
    		//客户端无需改变
    		Person person = new Person();
    		person.receive(new Email());
    		
    		person.receive(new WeiXin());
    	}
    
    }
    
    //定义接口
    interface IReceiver {
    	public String getInfo();
    }
    
    class Email implements IReceiver {
    	public String getInfo() {
    		return "电子邮件信息: hello,world";
    	}
    }
    
    //增加微信
    class WeiXin implements IReceiver {
    	public String getInfo() {
    		return "微信信息: hello,ok";
    	}
    }
    
    //方式2
    class Person {
    	//这里我们是对接口的依赖
    	public void receive(IReceiver receiver ) {
    		System.out.println(receiver.getInfo());
    	}
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    // 方式1: 通过接口传递实现依赖
    public class DependencyPass {
    
        public static void main(String[] args) {
            // TODO Auto-generated method stub
            ChangHong changHong = new ChangHong();
    		OpenAndClose openAndClose = new OpenAndClose();
    		openAndClose.open(changHong);
        }
    
    }
    
    // 开关的接口
    interface IOpenAndClose {
        public void open(ITV tv); //抽象方法,接收接口
    }
    
    interface ITV { //ITV接口
        public void play();
    }
    
    class ChangHong implements ITV {
    
        @Override
        public void play() {
            // TODO Auto-generated method stub
            System.out.println("长虹电视机,打开");
        }
    
    }
    
    // 实现接口
    class OpenAndClose implements IOpenAndClose {
        public void open(ITV tv) {
            tv.play();
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    //方式2:通过构造器传递
    public class DependencyPass {
    
        public static void main(String[] args) {
            ChangHong changHong = new ChangHong();
            OpenAndClose openAndClose = new OpenAndClose(changHong);
    		openAndClose.open();
        }
    
    }
    
    interface ITV { //ITV接口
        public void play();
    }
    
    class ChangHong implements ITV {
    
        @Override
        public void play() {
            // TODO Auto-generated method stub
            System.out.println("长虹电视机,打开");
        }
    
    }
    
    interface IOpenAndClose {
        public void open(); //抽象方法
    }
    
    class OpenAndClose implements IOpenAndClose {
        public ITV tv; //成员
    
        public OpenAndClose(ITV tv) { //构造器
            this.tv = tv;
        }
    
        public void open() {
            this.tv.play();
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    //方式3:通过setter方法进行依赖传递
    public class DependencyPass {
    
        public static void main(String[] args) {
            ChangHong changHong = new ChangHong();
           	OpenAndClose openAndClose = new OpenAndClose();
    		openAndClose.setTv(changHong);
    		openAndClose.open();
        }
    
    }
    
    interface IOpenAndClose {
    	public void open(); // 抽象方法
    
    	public void setTv(ITV tv);
    }
    
    interface ITV { // ITV接口
    	public void play();
    }
    
    class ChangHong implements ITV {
    
    	@Override
    	public void play() {
    		// TODO Auto-generated method stub
    		System.out.println("长虹电视机,打开");
    	}
    
    }
    
    class OpenAndClose implements IOpenAndClose {
    	private ITV tv;
    
    	public void setTv(ITV tv) {
    		this.tv = tv;
    	}
    
    	public void open() {
    		this.tv.play();
    	}
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43

    小结:

    1. 低层模块尽量都要有抽象类或接口,或者两者都有,程序稳定性更好.
    2. 变量的声明类型尽量是抽象类或接口, 这样我们的变量引用和实际对象间,就存在一个缓冲层,利于程序扩展和优化
    3. 继承时遵循里氏替换原则

    4. 里氏替换原则

    继承在给程序设计带来便利的同时,也带来了弊端。比如使用继承会给程序带来侵入性,程序的可移植性降低,增加对象间的耦合性,如果一个类被其他的类所继承,则当这个类需要修改时,必须考虑到所有的子类,并且父类修改后,所有涉及到子类的功能都有可能产生故障

    1. 如果对每个类型为 T1 的对象 o1,都有类型为 T2 的对象 o2,使得以 T1 定义的所有程序 P 在所有的对象 o1 都代换成 o2 时,程序 P 的行为没有发生变化,那么类型 T2 是类型 T1 的子类型。换句话说,所有引用基类的地方必须能透明地使用其子类的对象
    2. 在使用继承时,遵循里氏替换原则,在子类中尽量不要重写父类的方法
    3. 里氏替换原则告诉我们,继承实际上让两个类耦合性增强了,在适当的情况下,可以通过聚合,组合,依赖 来解决问题

    问题示例:

    public class Liskov {
    
    	public static void main(String[] args) {
    		// TODO Auto-generated method stub
    		A a = new A();
    		System.out.println("11-3=" + a.func1(11, 3));
    		System.out.println("1-8=" + a.func1(1, 8));
    
    		System.out.println("-----------------------");
    		B b = new B();
    		System.out.println("11-3=" + b.func1(11, 3));//这里本意是求出11-3
    		System.out.println("1-8=" + b.func1(1, 8));// 1-8
    		System.out.println("11+3+9=" + b.func2(11, 3));
    		
    		
    
    	}
    
    }
    
    // A类
    class A {
    	// 返回两个数的差
    	public int func1(int num1, int num2) {
    		return num1 - num2;
    	}
    }
    
    // B类继承了A
    // 增加了一个新功能:完成两个数相加,然后和9求和
    class B extends A {
    	//这里,重写了A类的方法, 可能是无意识
    	public int func1(int a, int b) {
    		return a + b;
    	}
    
    	public int func2(int a, int b) {
    		return func1(a, b) + 9;
    	}
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40

    使用里氏替换:

    public class Liskov {
    
    	public static void main(String[] args) {
    		// TODO Auto-generated method stub
    		A a = new A();
    		System.out.println("11-3=" + a.func1(11, 3));
    		System.out.println("1-8=" + a.func1(1, 8));
    
    		System.out.println("-----------------------");
    		B b = new B();
    		//因为B类不再继承A类,因此调用者,不会再func1是求减法
    		//调用完成的功能就会很明确
    		System.out.println("11+3=" + b.func1(11, 3));//这里本意是求出11+3
    		System.out.println("1+8=" + b.func1(1, 8));// 1+8
    		System.out.println("11+3+9=" + b.func2(11, 3));
    		
    		
    		//使用组合仍然可以使用到A类相关方法
    		System.out.println("11-3=" + b.func3(11, 3));// 这里本意是求出11-3
    		
    
    	}
    
    }
    
    //创建一个更加基础的基类
    class Base {
    	//把更加基础的方法和成员写到Base类
    }
    
    // A类
    class A extends Base {
    	// 返回两个数的差
    	public int func1(int num1, int num2) {
    		return num1 - num2;
    	}
    }
    
    // B类继承了A
    // 增加了一个新功能:完成两个数相加,然后和9求和
    class B extends Base {
    	//如果B需要使用A类的方法,使用组合关系
    	private A a = new A();
    	
    	//这里,重写了A类的方法, 可能是无意识
    	public int func1(int a, int b) {
    		return a + b;
    	}
    
    	public int func2(int a, int b) {
    		return func1(a, b) + 9;
    	}
    	
    	//我们仍然想使用A的方法
    	public int func3(int a, int b) {
    		return this.a.func1(a, b);
    	}
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58

    5. 开闭原则(Open-Closed Principle简称OCP原则)

    最基础、最重要的设计原则

    1. 一个软件实体如类,模块和函数应该对扩展开放(对提供方),对修改关闭(对使用方)。用抽象构建框架,用实现扩展细节。
    2. 当软件需要变化时,尽量通过扩展软件实体的行为来实现变化,而不是通过修改已有的代码来实现变化。
    3. 编程中遵循其它原则,以及使用设计模式的目的就是遵循开闭原则
    //看看存在的问题
    public class Ocp {
    
    	public static void main(String[] args) {
    		//使用看看存在的问题
    		GraphicEditor graphicEditor = new GraphicEditor();
    		graphicEditor.drawShape(new Rectangle());
    		graphicEditor.drawShape(new Circle());
    		graphicEditor.drawShape(new Triangle());
    	}
    
    }
    
    //这是一个用于绘图的类 [使用方]
    class GraphicEditor {
    	//接收Shape对象,然后根据type,来绘制不同的图形
    	public void drawShape(Shape s) {
    		if (s.m_type == 1)
    			drawRectangle(s);
    		else if (s.m_type == 2)
    			drawCircle(s);
    		else if (s.m_type == 3)
    			drawTriangle(s);
    	}
    
    	//绘制矩形
    	public void drawRectangle(Shape r) {
    		System.out.println(" 绘制矩形 ");
    	}
    
    	//绘制圆形
    	public void drawCircle(Shape r) {
    		System.out.println(" 绘制圆形 ");
    	}
    	
    	//绘制三角形
    	public void drawTriangle(Shape r) {
    		System.out.println(" 绘制三角形 ");
    	}
    }
    
    //Shape类,基类
    class Shape {
    	int m_type;
    }
    
    class Rectangle extends Shape {
    	Rectangle() {
    		super.m_type = 1;
    	}
    }
    
    class Circle extends Shape {
    	Circle() {
    		super.m_type = 2;
    	}
    }
    
    //新增画三角形
    class Triangle extends Shape {
    	Triangle() {
    		super.m_type = 3;
    	}
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    public class Ocp {
    
    	public static void main(String[] args) {
    		//使用看看存在的问题
    		GraphicEditor graphicEditor = new GraphicEditor();
    		graphicEditor.drawShape(new Rectangle());
    		graphicEditor.drawShape(new Circle());
    		graphicEditor.drawShape(new Triangle());
    		graphicEditor.drawShape(new OtherGraphic());
    	}
    
    }
    
    //这是一个用于绘图的类 [使用方]
    class GraphicEditor {
    	//接收Shape对象,调用draw方法
    	public void drawShape(Shape s) {
    		s.draw();
    	}
    
    	
    }
    
    //Shape类,基类
    abstract class Shape {
    	int m_type;
    	
    	public abstract void draw();//抽象方法
    }
    
    class Rectangle extends Shape {
    	Rectangle() {
    		super.m_type = 1;
    	}
    
    	@Override
    	public void draw() {
    		// TODO Auto-generated method stub
    		System.out.println(" 绘制矩形 ");
    	}
    }
    
    class Circle extends Shape {
    	Circle() {
    		super.m_type = 2;
    	}
    	@Override
    	public void draw() {
    		// TODO Auto-generated method stub
    		System.out.println(" 绘制圆形 ");
    	}
    }
    
    //新增画三角形
    class Triangle extends Shape {
    	Triangle() {
    		super.m_type = 3;
    	}
    	@Override
    	public void draw() {
    		// TODO Auto-generated method stub
    		System.out.println(" 绘制三角形 ");
    	}
    }
    
    //新增一个图形
    class OtherGraphic extends Shape {
    	OtherGraphic() {
    		super.m_type = 4;
    	}
    
    	@Override
    	public void draw() {
    		// TODO Auto-generated method stub
    		System.out.println(" 绘制其它图形 ");
    	}
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77

    6. 迪米特法则

    1. 一个对象应该对其他对象保持最少的了解
    2. 类与类关系越密切,耦合度越大
    3. 迪米特法则(Demeter Principle)又叫最少知道原则,即一个类对自己依赖的类知道的越少越好。也就是说,对于被依赖的类不管多么复杂,都尽量将逻辑封装在类的内部。对外除了提供的 public 方法,不对外泄露任何信息
    4. 迪米特法则还有个更简单的定义:只与直接的朋友通信
    5. 直接的朋友:每个对象都会与其他对象有耦合关系,只要两个对象之间有耦合关系,我们就说这两个对象之间是朋友关系。耦合的方式很多,依赖,关联,组合,聚合等。其中,我们称出现成员变量方法参数方法返回值中的类为直接的朋友,而出现在局部变量中的类不是直接的朋友。也就是说,陌生的类最好不要以局部变量的形式出现在类的内部。
    //客户端
    public class Demeter1 {
    
    	public static void main(String[] args) {
    		//创建了一个 SchoolManager 对象
    		SchoolManager schoolManager = new SchoolManager();
    		//输出学院的员工id 和  学校总部的员工信息
    		schoolManager.printAllEmployee(new CollegeManager());
    
    	}
    
    }
    
    
    //学校总部员工类
    class Employee {
    	private String id;
    
    	public void setId(String id) {
    		this.id = id;
    	}
    
    	public String getId() {
    		return id;
    	}
    }
    
    
    //学院的员工类
    class CollegeEmployee {
    	private String id;
    
    	public void setId(String id) {
    		this.id = id;
    	}
    
    	public String getId() {
    		return id;
    	}
    }
    
    
    //管理学院员工的管理类
    class CollegeManager {
    	//返回学院的所有员工
    	public List<CollegeEmployee> getAllEmployee() {
    		List<CollegeEmployee> list = new ArrayList<CollegeEmployee>();
    		for (int i = 0; i < 10; i++) { //这里我们增加了10个员工到 list
    			CollegeEmployee emp = new CollegeEmployee();
    			emp.setId("学院员工id= " + i);
    			list.add(emp);
    		}
    		return list;
    	}
    }
    
    //学校管理类
    
    //分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
    //CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则 
    class SchoolManager {
    	//返回学校总部的员工
    	public List<Employee> getAllEmployee() {
    		List<Employee> list = new ArrayList<Employee>();
    		
    		for (int i = 0; i < 5; i++) { //这里我们增加了5个员工到 list
    			Employee emp = new Employee();
    			emp.setId("学校总部员工id= " + i);
    			list.add(emp);
    		}
    		return list;
    	}
    
    	//该方法完成输出学校总部和学院员工信息(id)
    	void printAllEmployee(CollegeManager sub) {
    		
    		//分析问题
    		//1. 这里的 CollegeEmployee 不是  SchoolManager的直接朋友
    		//2. CollegeEmployee 是以局部变量方式出现在 SchoolManager
    		//3. 违反了 迪米特法则 
    		
    		//获取到学院员工
    		List<CollegeEmployee> list1 = sub.getAllEmployee();
    		System.out.println("------------学院员工------------");
    		for (CollegeEmployee e : list1) {
    			System.out.println(e.getId());
    		}
    		//获取到学校总部员工
    		List<Employee> list2 = this.getAllEmployee();
    		System.out.println("------------学校总部员工------------");
    		for (Employee e : list2) {
    			System.out.println(e.getId());
    		}
    	}
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    //客户端
    public class Demeter1 {
    
    	public static void main(String[] args) {
    		System.out.println("~~~使用迪米特法则的改进~~~");
    		//创建了一个 SchoolManager 对象
    		SchoolManager schoolManager = new SchoolManager();
    		//输出学院的员工id 和  学校总部的员工信息
    		schoolManager.printAllEmployee(new CollegeManager());
    
    	}
    
    }
    
    
    //学校总部员工类
    class Employee {
    	private String id;
    
    	public void setId(String id) {
    		this.id = id;
    	}
    
    	public String getId() {
    		return id;
    	}
    }
    
    
    //学院的员工类
    class CollegeEmployee {
    	private String id;
    
    	public void setId(String id) {
    		this.id = id;
    	}
    
    	public String getId() {
    		return id;
    	}
    }
    
    
    //管理学院员工的管理类
    class CollegeManager {
    	//返回学院的所有员工
    	public List<CollegeEmployee> getAllEmployee() {
    		List<CollegeEmployee> list = new ArrayList<CollegeEmployee>();
    		for (int i = 0; i < 10; i++) { //这里我们增加了10个员工到 list
    			CollegeEmployee emp = new CollegeEmployee();
    			emp.setId("学院员工id= " + i);
    			list.add(emp);
    		}
    		return list;
    	}
    	
    	//输出学院员工的信息
    	public void printEmployee() {
    		//获取到学院员工
    		List<CollegeEmployee> list1 = getAllEmployee();
    		System.out.println("------------学院员工------------");
    		for (CollegeEmployee e : list1) {
    			System.out.println(e.getId());
    		}
    	}
    }
    
    //学校管理类
    
    //分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
    //CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则 
    class SchoolManager {
    	//返回学校总部的员工
    	public List<Employee> getAllEmployee() {
    		List<Employee> list = new ArrayList<Employee>();
    		
    		for (int i = 0; i < 5; i++) { //这里我们增加了5个员工到 list
    			Employee emp = new Employee();
    			emp.setId("学校总部员工id= " + i);
    			list.add(emp);
    		}
    		return list;
    	}
    
    	//该方法完成输出学校总部和学院员工信息(id)
    	void printAllEmployee(CollegeManager sub) {
    		
    		//分析问题
    		//1. 将输出学院的员工方法,封装到CollegeManager
    		sub.printEmployee();
    	
    		//获取到学校总部员工
    		List<Employee> list2 = this.getAllEmployee();
    		System.out.println("------------学校总部员工------------");
    		for (Employee e : list2) {
    			System.out.println(e.getId());
    		}
    	}
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99

    注意事项:

    1. 迪米特法则的核心是降低类之间的耦合
    2. 但是注意:由于每个类都减少了不必要的依赖,因此迪米特法则只是要求降低类间(对象间)耦合关系, 并不是要求完全没有依赖关系

    7. 合成复用原则(Composite Reuse Principle)

    设计原则核心思想

    1. 找出应用中可能需要变化之处,把它们独立出来,不要和那些不需要变化的代码混在一起。
    2. 针对接口编程,而不是针对实现编程。
    3. 为了交互对象之间的松耦合设计而努力

    设计模式类型

    1. 创建型模式:单例模式、抽象工厂模式、原型模式、建造者模式、工厂模式。
    2. 结构型模式:适配器模式、桥接模式、装饰模式、组合模式、外观模式、享元模式、代理模式。
    3. 行为型模式:模版方法模式、命令模式、访问者模式、迭代器模式、观察者模式、中介者模式、备忘录模式、解释器模式(Interpreter 模式)、状态模式、策略模式、职责链模式(责任链模式)。
  • 相关阅读:
    JavaScript 对象增删改查 + 遍历对象+内置函数 + 随机对象
    UDP 协议详解
    LaTex 使用颜色突出文中链接或引用
    vue - sass样式穿透实现
    【3etcd+3master+3woker+2lb】k8s实验环境搭建二:部署etcd服务
    基于SpringBoot的流浪动物管理系
    简谈计算机网络与网络编程
    VoxWeekly|The Sandbox 生态周报|20230918
    数据库定时备份winserver2012篇
    【Github】不支持RSA密钥与SHA-1,使用github token
  • 原文地址:https://blog.csdn.net/qq_45742250/article/details/132754063