复制一份基础消费者的代码,在 IDEA 中同时启动,即可启动同一个消费者组中的两个消费者。
代码
package com.xz.kafka.consumer;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;
import java.time.Duration;
import java.util.ArrayList;
import java.util.Properties;
public class CustomConsumer1 {
public static void main(String[] args) {
// 配置
Properties properties = new Properties();
// 连接 bootstrap.servers
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.136.27:9092,192.168.136.28:9092,192.168.136.29:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 配置消费者组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test5");
// 设置分区分配策略
properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG,"org.apache.kafka.clients.consumer.StickyAssignor");
// 1 创建一个消费者 "", "hello"
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题 first
ArrayList<String> topics = new ArrayList<>();
topics.add("firstTopic");
kafkaConsumer.subscribe(topics);
// 3 消费数据
while (true){
//每一秒拉取一次数据
ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
//输出数据
for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
System.out.println(consumerRecord);
}
kafkaConsumer.commitAsync();
}
}
}
代码
package com.xz.kafka.consumer;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;
import java.time.Duration;
import java.util.ArrayList;
import java.util.Properties;
public class CustomConsumer2 {
public static void main(String[] args) {
// 0 配置
Properties properties = new Properties();
// 连接 bootstrap.servers
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.136.27:9092,192.168.136.28:9092,192.168.136.29:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 配置消费者组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test5");
// 设置分区分配策略
properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG,"org.apache.kafka.clients.consumer.StickyAssignor");
// 1 创建一个消费者 "", "hello"
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题 first
ArrayList<String> topics = new ArrayList<>();
topics.add("firstTopic");
kafkaConsumer.subscribe(topics);
// 3 消费数据
while (true){
ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
System.out.println(consumerRecord);
}
}
}
}
代码
package com.xz.kafka.consumer;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;
import java.time.Duration;
import java.util.ArrayList;
import java.util.Properties;
public class CustomConsumer3 {
public static void main(String[] args) {
// 配置
Properties properties = new Properties();
// 连接 bootstrap.servers
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.136.27:9092,192.168.136.28:9092,192.168.136.29:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 配置消费者组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test5");
// 设置分区分配策略
properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG,"org.apache.kafka.clients.consumer.StickyAssignor");
// 1 创建一个消费者 "", "hello"
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题 first
ArrayList<String> topics = new ArrayList<>();
topics.add("firstTopic");
kafkaConsumer.subscribe(topics);
// 3 消费数据
while (true){
//每一秒拉取一次数据
ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
//输出数据
for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
System.out.println(consumerRecord);
}
kafkaConsumer.commitAsync();
}
}
}
代码
package com.xz.kafka.producer;
import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
public class CustomProducerCallback {
public static void main(String[] args) throws InterruptedException {
//1、创建 kafka 生产者的配置对象
Properties properties = new Properties();
//2、给 kafka 配置对象添加配置信息:bootstrap.servers
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.136.27:9092,192.168.136.28:9092,192.168.136.29:9092");
//3、指定对应的key和value的序列化类型 key.serializer value.serializer
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
//4、创建 kafka 生产者对象
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);
//5、调用 send 方法,发送消息
for (int i = 0; i < 200; i++) {
kafkaProducer.send(new ProducerRecord<>("firstTopic", "hello kafka" + i), new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception exception) {
if (exception == null){
System.out.println("主题: "+metadata.topic() + " 分区: "+ metadata.partition());
}
}
});
Thread.sleep(2);
}
// 3 关闭资源
kafkaProducer.close();
}
}
在 Kafka 集群控制台,创建firstTopic主题
bin/kafka-topics.sh --bootstrap-server 192.168.136.27:9092 --create --partitions 3 --replication-factor 1 --topic firstTopic
首先,在 IDEA中分别启动消费者1、消费者2和消费者3代码
然后,在 IDEA中分别启动生产者代码
在 IDEA 控制台观察消费者1、消费者2和消费者3控制台接收到的数据,如下图所示:
由下图可知:3个消费者在消费不同分区的数据