学习资源来自b站,一点点手敲代码初步接触深度学习训练模型。感觉还是很神奇的!!
将训练资源下载下来并通过训练模型来实现,本篇主要用来记录当时的一些代码和注释,方便后续回顾。
- ####################################### net.py ########################################
- import torch
- from torch import nn
-
-
- # 定义一个网络模型
- class MyLeNet5(nn.Module):
- # 初始化网络
- # 主要是复现LeNet-5
- def __init__(self):
- super(MyLeNet5, self).__init__()
-
- # 卷积层c1
- self.c1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, padding=2)
- # 单纯单通道 so in=1,输出为6,约定俗成的卷积核是5,padding可以用公式算出来设置为2
-
- # 激活函数
- self.Sigmoid = nn.Sigmoid()
-
- # 平均池化(定义一个池化层) !注意! 池化层不改变通道大小,但是会改变特征图片的窗口大小
- self.s2 = nn.AvgPool2d(kernel_size=2, stride=2)
- # 卷积核为2,步长为2
-
- # 卷积层c3
- self.c3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
-
- # 池化层s4
- self.s4 = nn.AvgPool2d(kernel_size=2, stride=2)
-
- # 卷积层c5
- self.c5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5)
-
- # 平展层
- self.flatten = nn.Flatten()
- # 设置线性连接层
- self.f6 = nn.Linear(120, 84)
- # 输入、输出
- self.output = nn.Linear(84, 10)
-
- def forward(self, x):
- # 用Sigmoid函数激活
- x = self.Sigmoid(self.c1(x))
- # 池化层
- x = self.s2(x)
- # 以此类推
- x = self.Sigmoid(self.c3(x))
- x = self.s4(x)
- x = self.c5(x)
- x = self.flatten(x)
- x = self.f6(x)
- x = self.output(x)
- return x
-
-
- if __name__ == "__main__":
- # 随机生成一个 批次1,通道1,大小是28*28 实例化
- x = torch.rand([1, 1, 28, 28])
- model = MyLeNet5()
- y = model(x)
- ######################################## test.py ########################################
- import torch
- from net import MyLeNet5
- from torch.autograd import Variable
- from torchvision import datasets, transforms
- from torchvision.transforms import ToPILImage
-
- # 将数据转化为tensor格式(数据是矩阵格式,要进行转化为tensor格式)
- data_transform = transforms.Compose([
- transforms.ToTensor()
- ])
-
- # 加载训练数据集
- train_dataset = datasets.MNIST(root='./data', train=True, transform=data_transform, download=True)
- train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=16, shuffle=True)
-
- # 加载测试数据集
- test_dataset = datasets.MNIST(root='./data', train=False, transform=data_transform, download=True)
- test_dataloader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=16, shuffle=True)
-
- # 如果有显卡,转到GPU
- device = "cuda" if torch.cuda.is_available() else 'cpu'
-
- # 调用net里面定义的模型,将模型数据转到GPU
- model = MyLeNet5().to(device)
-
- model.load_state_dict(torch.load("C:/Users/79926/PycharmProjects/pythonProject1/save_model/best_model.pth"))
-
- # 获取结果
- classes = [
- "0",
- "1",
- "2",
- "3",
- "4",
- "5",
- "6",
- "7",
- "8",
- "9",
- ]
-
- # 把tensor转化为图片,方便可视化
- show = ToPILImage()
-
- # 进入验证
- for i in range(5):
- X, y = test_dataset[i][0], test_dataset[i][1]
- show(X).show()
- # 这里会显示出5张图片
-
- X = Variable(torch.unsqueeze(X, dim=0).float(), requires_grad=False).to(device)
- with torch.no_grad():
- pred = model(X)
-
- predicted, actual = classes[torch.argmax(pred[0])], classes[y]
-
- print(f'predicted:"{predicted}",actual:"{actual}"')
- ######################################## train.py ########################################
- import torch
- from torch import nn
- from net import MyLeNet5
- from torch.optim import lr_scheduler
- from torchvision import datasets, transforms
- import os
-
- # 将数据转化为tensor格式(数据是矩阵格式,要进行转化为tensor格式)
- data_transform = transforms.Compose([
- transforms.ToTensor()
- ])
-
- # 加载训练数据集
- train_dataset = datasets.MNIST(root='./data', train=True, transform=data_transform, download=True)
- train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=16, shuffle=True)
-
- # 加载测试数据集
- test_dataset = datasets.MNIST(root='./data', train=False, transform=data_transform, download=True)
- test_dataloader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=16, shuffle=True)
-
- # 如果有显卡,转到GPU
- device = "cuda" if torch.cuda.is_available() else 'cpu'
-
- # 调用net里面定义的模型,将模型数据转到GPU
- model = MyLeNet5().to(device)
-
- # 定义一个损失函数(交叉熵损失)
- loss_fn = nn.CrossEntropyLoss()
-
- # 定义一个优化器
- # (梯度下降)
- optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum=0.9)
-
- # 学习率每隔10轮变为原来的0.1
- lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
-
-
- # 定义训练函数
- def train(dataloader, model, loss_fn, optimizer):
- loss, current, n = 0.0, 0.0, 0
- for batch, (X, y) in enumerate(dataloader):
- # 前向传播
- X, y = X.to(device), y.to(device)
- output = model(X)
- # 损失函数(用来反向传播)
- cur_loss = loss_fn(output, y)
- _, pred = torch.max(output, axis=1)
-
- # 计算精确度(累加->一轮的)
- cur_acc = torch.sum(y == pred) / output.shape[0]
-
- optimizer.zero_grad()
- cur_loss.backward()
- optimizer.step()
-
- loss += cur_loss.item()
- current += cur_acc.item()
- n = n + 1
- print("train_loss" + str(loss / n))
- print("train_acc" + str(current / n))
-
-
- def val(dataloader, model, loss_fn):
- model.eval()
- loss, current, n = 0.0, 0.0, 0
- with torch.no_grad():
- for batch, (X, y) in enumerate(dataloader):
- # 前向传播
- X, y = X.to(device), y.to(device)
- output = model(X)
- # 损失函数(用来反向传播)
- cur_loss = loss_fn(output, y)
- _, pred = torch.max(output, axis=1)
- cur_acc = torch.sum(y == pred) / output.shape[0]
- loss += cur_loss.item()
- current += cur_acc.item()
- n = n + 1
- print("val_loss" + str(loss / n))
- print("val_acc" + str(current / n))
- return current/n
-
- # 开始训练
- epoch = 50
- min_acc = 0
- for t in range(epoch):
- print(f'epoch{t + 1}\n--------------')
- train(train_dataloader, model, loss_fn, optimizer)
- a=val(test_dataloader, model, loss_fn)
- #保存最好模型权重
- if a>min_acc:
- folder = 'save_model'
- if not os.path.exists(folder):
- os.mkdir('save_model')
- min_acc = a
- print('save best model')
- torch.save(model.state_dict(),'save_model/best_model.pth')
- print('Done!')
-
附:该up主视频资源:(讲的很棒)