(1)参数含义:
注意,里面的“padding”参数:《both》side所以是上下左右《四》边都会加一个padding数量的0列:
证明如下:
- import torch
-
- x = torch.randn(3,1,5,4)
- print(x)
-
- conv = torch.nn.Conv2d(1,4,3,1,1)
- res = conv(x)
-
- print(res.shape) # torch.Size([3, 4, 5, 4])
- #所以说,很明显,只要padding的参数设置为1 + filter大小为3*3,那么输出的图像高、宽==输入的高、宽
运行结果:torch.Size([3, 4, 5, 4]
(2)具体用法:
- import torch
-
- x = torch.randn(3,1,5,4)
- print(x)
-
- conv = torch.nn.Conv2d(1,4,(2,3))
- res = conv(x)
-
- print(res.shape) # torch.Size([3, 4, 4, 2])
输入:x[ batch_size, channels, height_1, width_1 ]
batch_size,一个batch中样本的个数 3
channels,通道数,也就是当前层的深度 1
height_1, 图片的高 5
width_1, 图片的宽 4
卷积操作:Conv2d[ channels, output, height_2, width_2 ]
channels,通道数,和上面保持一致,也就是当前层的深度 1
output ,输出的深度 4【需要4个filter】
height_2,卷积核的高 2
width_2,卷积核的宽 3
输出:res[ batch_size,output, height_3, width_3 ]
batch_size,,一个batch中样例的个数,同上 3
output, 输出的深度 4
height_3, 卷积结果的高度 4
width_3,卷积结果的宽度 2
(3)功能:
里面实现的功能,应该就是实现利用自己设定数量的filters,进行按照自己设定的stride、padding的方式对整个图像进行二维卷积,得到一个新的channel的图像,
新的channels的数目 == filters的数目,
至于输出的图像的size,需要自己进行计算一下!!!
(1)参数含义:
(2)用法示例:
里面看到的randn()
输入:x[ batch_size, channels, height_1, width_1 ]
batch_size,一个batch中样本的个数 2,也就是有2个tensor张量,后面3是张量的厚、高、宽
channel的大小是3
高、宽都是2
- import torch.nn as nn
- import torch
- if __name__ == '__main__':
- bn = nn.BatchNorm2d(3)
- ip = torch.randn(2, 3, 2, 2)
- print(ip)
- output = bn(ip)
- print(output)
(3)功能作用:
BatchNorm为什么NB呢,关键还是效果好。①不仅仅极大提升了训练速度,收敛过程大大加快;②还能增加分类效果,一种解释是这是类似于Dropout的一种防止过拟合的正则化表达方式,所以不用Dropout也能达到相当的效果;③另外调参过程也简单多了,对于初始化要求没那么高,而且可以使用大的学习率等。总而言之,经过这么简单的变换,带来的好处多得很,这也是为何现在BN这么快流行起来的原因。
具体参见这一篇文章:白话详细解读(七)----- Batch Normalization_底层研究生的博客-CSDN博客
(1)参数含义:
nn.MaxPool2d(2, 2, 0), #但是pooling会改变图像的大小,图像会变成64*(128/2)*(128/2)
第一个“2”: 代表kernel_size,也就是窗口的大小,这里只有1个数值,那就是正方形的了
第二个“2”:代表stride,这里只有1个数值,那么就是向右的时候2个,向下的时候,也是2个
第三个“0”:代表在4个边加padding层的层数
(2)用法示例:
torch.nn.MaxPool2d详解_Medlen的博客-CSDN博客
具体可以参见这一篇博客,每个参数的用法讲述得非常详细
(3)作用:
主要是为了减少图像的高、宽size,和图像压缩的思想一致,也是利用了对于“下采样”的话,人眼对图像的感知是不会发生改变的
(1)一个最基础的实例:
- import torch
- from torch.utils.data import Dataset, DataLoader
- #下面逐步分析如下创建Dataset 和 DataLoader的示例代码
-
- #1.从已经定义好的Dataset基类中继承得到Plus1Dataset类
- class Plus1Dataset(Dataset):
- def __init__(self, a=0, b=1): #(1)定义这个类的构造函数,self是固定的要求,a,b是自己设置的变量
- super(Dataset, self).__init__()#继承得到积累的构造函数
- assert a <= b #需要a<=b,否则终断开(断言语法)
- self.a = a
- self.b = b
-
- def __len__(self):
- return self.b - self.a + 1 #(2)定义len函数,返回b-a+1
-
- def __getitem__(self, index): #(3)定义getitem函数,有一个参数index,一般都是返回这个index位置的那一行数据
- assert self.a-1 <= index <= self.b-1
- return index, index+1
- #2.实例化创建Plus1Dataset和DataLoader的对象
- data_train = Plus1Dataset(a=1,b=16)
- data_train_loader = DataLoader(data_train, batch_size=4, shuffle=True)
- print(len(data_train))
从这个实例可以看出,
Dataset只是一个数据的容器,它是Loader的一部分
但是呢,DataLoader里面不仅有数据,还有对数据进行处理的方法,比如batch_size的大小,是否shuffle等
这个文章里面讲述得还算比较清晰,不过需要下载CIFAR-10的数据集
- import matplotlib.pyplot as plt
-
- test = plt.imread("./00000000.png")
-
- plt.imshow(test)
- plt.axis('off') # 关闭坐标轴
- plt.show()
- from PIL import Image
-
- # Load the image
- image = Image.open("image.jpg")
-
- # Save the image with a new name and format
- output_path = "output.png"
- image.save(output_path, "PNG")
-
- # Show the output path
- print("Image saved at:", output_path)
通过Image.open打开的对象可以直接作为transforms的参数,它可以和numpy.array进行转换,上面用plt打开的方式其实得到的是numpy.array对象,不能直接transform
慢慢阅读学习+自己实践一下是否可以对一个图像进行这样的处理
- import matplotlib.pyplot as plt
- from PIL import Image
- test = plt.imread("./00000000.png")
- test2 = Image.open("00000000.png")
-
- #plt.imshow(test)
- #plt.axis('off')
-
- #plt.show()
- mean = [0.485, 0.456, 0.406]
- std = [0.229, 0.224, 0.225]
-
-
-
- import torchvision.transforms as transforms
- train_transforms =transforms.Compose([
- transforms.Resize((500,500)), #这个函数可以将图像转变为统一的500*500的大小
- #transforms.CenterCrop(300), #这个就是从中心裁剪300*300的大小的图片,原来其他部分都不要了
- #transforms.RandomCrop(300), #随机裁剪出一个300*300部分
- #transforms.RandomHorizontalFlip(0.5),#以0.5个概率进行水平翻转
- #transforms.RandomRotation(degrees=45),#在不超过45度的范围内进行随机旋转
- #transforms.Normalize(mean = mean,std=std) #反正就是 归一化,没什么好说的
- #transforms.ToTensor(),#这个用得挺多的,就是将图像转换为tensor的数据类型
- #transforms.ColorJitter(brightness=0.5,contrast=0.5,saturation=0.5,hue=0.5),#分别设置亮度,对比度,饱和度,色调的偏差范围[随机]
- #transforms.Grayscale(), #将图像转变为channel==1的灰度图
-
-
- ])
-
- img1 = train_transforms(test2)
-
- #下面是存储一个Image类型的图片放到该目录下的方式
- save_path = "test_output.png"
- img1.save(save_path,"PNG")
- print("Image as below:",save_path)
-
- img1.show() #似乎Image只有这个函数可以显示图像,而且是用默认图像查看器打开的,算了,就这样吧
- #和上面的plt有些不同plt是在下面输出显示绘制
-
-
-
Pytorch nn.Softmax(dim=?) - 知乎 (zhihu.com)
这篇文章中详细讲解了 Softmax函数中的dim参数的用法:
这篇文章描述得非常清晰,比chatGPT讲的好多了
- class Classifier(nn.Module): #这里定义了这个CNN食物图像分类的nuaral network结构
- def __init__(self):
- super(Classifier, self).__init__()
- # The arguments for commonly used modules:
- # torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
- # torch.nn.MaxPool2d(kernel_size, stride, padding)
-
- # input image size: [3, 128, 128]
- #需要我进一步进行慢慢学习的是:
- #(1)这个Convd函数的参数的意义?以及具体的实现是什么?
- #答:里面实现的功能,应该就是实现利用自己设定数量的filters,进行按照自己设定的stride、padding的方式对整个图像进行二维卷积,得到一个新的channel的图像
- #...具体见csdn
- #(2)这个BatchNorm2d函数的参数的意义?以及实现的功能是什么
- #(3)这里特别需要注意的是,这次用的数据是图像,最开始有对图像进行transform.resize(128,128),所以图像的pixel大小应该是3*128*128
- #所以,这个图像数据到底经历了什么?
- self.cnn_layers = nn.Sequential(
- nn.Conv2d(3, 64, 3, 1, 1), #通过我的计算,输出的大小应该是64[厚]*128[高]*128[宽]
- nn.BatchNorm2d(64), #参数是channels(filters)的数量,只会改变数据分布,不会改变数据形状
- nn.ReLU(), #先通过BN,再使用ReLU是真的香,这样就可以最大化的利用BN得到的(0,1)正太分布了
- nn.MaxPool2d(2, 2, 0),#但是pooling会改变图像的大小,图像会变成64*(128/2)*(128/2)
-
- nn.Conv2d(64, 128, 3, 1, 1),
- nn.BatchNorm2d(128),
- nn.ReLU(),
- nn.MaxPool2d(2, 2, 0),#图像大小128*32*32
-
- nn.Conv2d(128, 256, 3, 1, 1),
- nn.BatchNorm2d(256),
- nn.ReLU(),
- nn.MaxPool2d(4, 4, 0),#图像大小256*8*8
- )
- self.fc_layers = nn.Sequential(
- nn.Linear(256 * 8 * 8, 256),
- nn.ReLU(),
- nn.Linear(256, 256),
- nn.ReLU(),
- nn.Linear(256, 11)
- )
-
- def forward(self, x):
- # input (x): [batch_size, 3, 128, 128]
- # output: [batch_size, 11]
-
- # Extract features by convolutional layers.
- x = self.cnn_layers(x)
-
- # The extracted feature map must be flatten before going to fully-connected layers.
- x = x.flatten(1) #需要展平之后,才能调用Linear()层
-
- # The features are transformed by fully-connected layers to obtain the final logits.
- x = self.fc_layers(x)
- return x
这个函数,就是为了使用哪些没有label的数据,从而实现semi-unsupervised的训练方式,这里暂时先不考虑
- def get_pseudo_labels(dataset, model, threshold=0.65): #参数是dataset,model和门槛
- # This functions generates pseudo-labels of a dataset using given model.
- # It returns an instance of DatasetFolder containing images whose prediction confidences exceed a given threshold.
- # You are NOT allowed to use any models trained on external data for pseudo-labeling.
- device = "cuda" if torch.cuda.is_available() else "cpu"#设备选择
-
- # Construct a data loader.
- data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=False) #创建一个data_loader
-
- # Make sure the model is in eval mode.
- model.eval()
- # Define softmax function.
- softmax = nn.Softmax(dim=-1)
-
- # Iterate over the dataset by batches.
- for batch in tqdm(data_loader):
- img, _ = batch
-
- # Forward the data
- # Using torch.no_grad() accelerates the forward process.
- with torch.no_grad():
- logits = model(img.to(device))
-
- # Obtain the probability distributions by applying softmax on logits.
- probs = softmax(logits)
-
- # ---------- TODO ----------
- # Filter the data and construct a new dataset.
-
- # # Turn off the eval mode.
- model.train()
- return dataset
- # ---------- Training ----------
- # Make sure the model is in train mode before training.
- model.train() #开启train模式
-
- # These are used to record information in training.
- train_loss = [] #准备好记录train过程中的loss数值和accuracy的数值
- train_accs = []
-
- # Iterate the training set by batches.
- for batch in tqdm(train_loader): #每一个batch中进行的操作
-
- # A batch consists of image data and corresponding labels.
- imgs, labels = batch #从这个batch中获取到imgs数据数组 和 labels数据数组
-
- # Forward the data. (Make sure data and model are on the same device.)
- logits = model(imgs.to(device)) #计算出这一个batch的logits
-
- # Calculate the cross-entropy loss.
- # We don't need to apply softmax before computing cross-entropy as it is done automatically.
- loss = criterion(logits, labels.to(device)) #计算logits和labels之间的loss
-
- # Gradients stored in the parameters in the previous step should be cleared out first.
- optimizer.zero_grad() #清空之前的grad
-
- # Compute the gradients for parameters.
- loss.backward()
-
- # Clip the gradient norms for stable training.
- grad_norm = nn.utils.clip_grad_norm_(model.parameters(), max_norm=10)
-
- # Update the parameters with computed gradients.
- optimizer.step() #调用backward+step进行常规化的模型更新 + clip_grad_norm防止梯度爆炸
-
- # Compute the accuracy for current batch.
- acc = (logits.argmax(dim=-1) == labels.to(device)).float().mean()
-
- # Record the loss and accuracy.
- train_loss.append(loss.item()) #将这个batch的loss放到数组中
- train_accs.append(acc) #将这个batch的acc放到数组中
- #一个epoch完成,接下来就是计算这一次的均值,然后进行打印输出
- # The average loss and accuracy of the training set is the average of the recorded values.
- train_loss = sum(train_loss) / len(train_loss)
- train_acc = sum(train_accs) / len(train_accs)
-
- # Print the information.
- print(f"[ Train | {epoch + 1:03d}/{n_epochs:03d} ] loss = {train_loss:.5f}, acc = {train_acc:.5f}")
-
- #validtion部分和train部分基本一样,处理backward+step哪里不需要了
- # ---------- Validation ----------
- # Make sure the model is in eval mode so that some modules like dropout are disabled and work normally.
- model.eval()
-
- # These are used to record information in validation.
- valid_loss = []
- valid_accs = []
-
- # Iterate the validation set by batches.
- for batch in tqdm(valid_loader):
-
- # A batch consists of image data and corresponding labels.
- imgs, labels = batch
-
- # We don't need gradient in validation.
- # Using torch.no_grad() accelerates the forward process.
- with torch.no_grad():
- logits = model(imgs.to(device))
-
- # We can still compute the loss (but not the gradient).
- loss = criterion(logits, labels.to(device))
-
- # Compute the accuracy for current batch.
- acc = (logits.argmax(dim=-1) == labels.to(device)).float().mean()
-
- # Record the loss and accuracy.
- valid_loss.append(loss.item())
- valid_accs.append(acc)
-
- # The average loss and accuracy for entire validation set is the average of the recorded values.
- valid_loss = sum(valid_loss) / len(valid_loss)
- valid_acc = sum(valid_accs) / len(valid_accs)
-
- # Print the information.
- print(f"[ Valid | {epoch + 1:03d}/{n_epochs:03d} ] loss = {valid_loss:.5f}, acc = {valid_acc:.5f}")
- # Make sure the model is in eval mode.
- # Some modules like Dropout or BatchNorm affect if the model is in training mode.
- model.eval()
-
- # Initialize a list to store the predictions.
- predictions = [] #开启eval()模式后,设置一个pred数组,用于存储通过model计算得到的预测结果,之后用于和labels进行比较
-
- # Iterate the testing set by batches.
- for batch in tqdm(test_loader): #还是利用tqdm进行迭代,一个个的batch进行处理
- # A batch consists of image data and corresponding labels.
- # But here the variable "labels" is useless since we do not have the ground-truth.
- # If printing out the labels, you will find that it is always 0.
- # This is because the wrapper (DatasetFolder) returns images and labels for each batch,
- # so we have to create fake labels to make it work normally.
- imgs, labels = batch #获取图像数据
-
- # We don't need gradient in testing, and we don't even have labels to compute loss.
- # Using torch.no_grad() accelerates the forward process.
- with torch.no_grad():
- logits = model(imgs.to(device)) #计算得到预测的结果
-
- # Take the class with greatest logit as prediction and record it.
- predictions.extend(logits.argmax(dim=-1).cpu().numpy().tolist()) #直接将预测的logits转换为preditions里面一些one-hot vec
- # Save predictions into the file.
- with open("predict.csv", "w") as f: #创建一个predict.csv文件
-
- # The first row must be "Id, Category"
- f.write("Id,Category\n") #第一行是:Id, Category
-
- # For the rest of the rows, each image id corresponds to a predicted class.
- for i, pred in enumerate(predictions): #将predictions中的结果逐个写入到这个文件中
- f.write(f"{i},{pred}\n")
训练的结果,就算是sample的代码用T4,也要跑25分钟才能跑完80个epoch
(1)这是用sample代码跑34个epoch时的 accuracy,在train上面已经很好了,但是在valid上面还是处于50%左右
(2)在第40个epoch时,出现了突破:
之后的结果就之后再说。。。