GPU架构近些年也有不少的变化,具体的可以参考别的博主的介绍,都比较详细。还有一些cuda中的专有名词的含义,可以参考《详解CUDA的Context、Stream、Warp、SM、SP、Kernel、Block、Grid》
常见的NppStatus,可以看这里。
当前模块主要功能是set图像中的像素值,主要分为三个大类:将ROI区域内的所有像素设置为一个特殊的值(Set),mask赋值(Masked Set),以及单通道赋值(Channel Set)。
三个大类分别以一个三通道的uint8_t为例子简单介绍一下。
// ROI区域内的三通道设置为aValue
NppStatus nppiSet_8u_C3R(const Npp8u aValue[3],
Npp8u *pDst,
int nDstStep,
NppiSize oSizeROI);
// 通过mask控制ROI区域内的那些像素会被set
NppStatus nppiSet_8u_C3MR(const Npp8u aValue[3],
Npp8u *pDst,
int nDstStep,
NppiSize oSizeROI,
const Npp8u *pMask,
int nMaskStep);
// 通过pointer的起始位置区别,选择某通道设置为固定值
NppStatus nppiSet_8u_C3CR(Npp8u nValue,
Npp8u *pDst,
int nDstStep,
NppiSize oSizeROI);
#include
#include
#include
#include
#define CUDA_FREE(ptr) { if (ptr != nullptr) { cudaFree(ptr); ptr = nullptr; } }
int main() {
std::string directory = "../";
// =============== load image ===============
cv::Mat image_dog = cv::imread(directory + "dog.png");
int image_width = image_dog.cols;
int image_height = image_dog.rows;
int image_size = image_width * image_height;
// =============== device memory ===============
uint8_t *out_ptr1, *out_ptr2, *out_ptr3;
cudaMalloc((void**)&out_ptr1, image_size * 3 * sizeof(uint8_t));
cudaMalloc((void**)&out_ptr2, image_size * 3 * sizeof(uint8_t));
cudaMalloc((void**)&out_ptr3, image_size * 3 * sizeof(uint8_t));
cudaMemcpy(out_ptr1, image_dog.data, image_size * 3 * sizeof(uint8_t), cudaMemcpyHostToDevice);
cudaMemcpy(out_ptr2, image_dog.data, image_size * 3 * sizeof(uint8_t), cudaMemcpyHostToDevice);
cudaMemcpy(out_ptr3, image_dog.data, image_size * 3 * sizeof(uint8_t), cudaMemcpyHostToDevice);
cv::Mat mask = cv::Mat::zeros(image_height, image_width, CV_8UC1);
cv::Mat mask1 = cv::Mat::ones(image_height * 3 / 4, image_width * 3 / 4, CV_8UC1);
cv::Rect rc1 = cv::Rect(image_width / 4, image_height / 4, image_width * 3 / 4, image_height * 3 / 4);
mask1.copyTo(mask(rc1));
uint8_t *gpu_mask;
cudaMalloc((void**)&gpu_mask, image_size * sizeof(uint8_t));
cudaMemcpy(gpu_mask, mask.data, image_size * sizeof(uint8_t), cudaMemcpyHostToDevice);
NppiSize roi1, roi2;
roi1.width = image_width;
roi1.height = image_height;
roi2.width = image_width / 2;
roi2.height = image_height / 2;
cv::Mat out_image = cv::Mat::zeros(image_height, image_width, CV_8UC3);
NppStatus status;
// =============== nppiSet_8u_C3R ===============
uint8_t value[3] = { 255, 0, 0 };
status = nppiSet_8u_C3R(value, out_ptr1, image_width * 3, roi1);
if (status != NPP_SUCCESS) {
std::cout << "[GPU] ERROR nppiSet_8u_C3R failed, status = " << status << std::endl;
return false;
}
cudaMemcpy(out_image.data, out_ptr1, image_size * 3, cudaMemcpyDeviceToHost);
cv::imwrite(directory + "set.jpg", out_image);
// =============== nppiSet_8u_C3R ===============
uint8_t value2[3] = { 0, 0, 255 };
status = nppiSet_8u_C3MR(value2, out_ptr2, image_width * 3, roi1, gpu_mask, image_width);
if (status != NPP_SUCCESS) {
std::cout << "[GPU] ERROR nppiSet_8u_C3MR failed, status = " << status << std::endl;
return false;
}
cudaMemcpy(out_image.data, out_ptr2, image_size * 3, cudaMemcpyD![请添加图片描述](https://img-blog.csdnimg.cn/9da721ce7d4649839ef40228bb3937e1.png)
eviceToHost);
cv::imwrite(directory + "set_mask.jpg", out_image);
// green
status = nppiSet_8u_C3CR(255, out_ptr3 + image_width * 3 * 200 + 1, image_width * 3, roi1);
if (status != NPP_SUCCESS) {
std::cout << "[GPU] ERROR nppiSet_8u_C3CR failed, status = " << status << std::endl;
return false;
}
cudaMemcpy(out_image.data, out_ptr3, image_size * 3, cudaMemcpyDeviceToHost);
cv::imwrite(directory + "set_channel.jpg", out_image);
// free
CUDA_FREE(out_ptr1)
CUDA_FREE(out_ptr2)
CUDA_FREE(out_ptr3)
}
cmake_minimum_required(VERSION 3.20)
project(test)
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
find_package(CUDA REQUIRED)
include_directories(${CUDA_INCLUDE_DIRS})
file(GLOB CUDA_LIBS "/usr/local/cuda/lib64/*.so")
add_executable(test test.cpp)
target_link_libraries(test
${OpenCV_LIBS}
${CUDA_LIBS}
)
注意:
除了比较常见的copy操作(copy,masked copy,channel copy)之外,还有一些planar和packed之间的来回拷贝,拷贝的同时伴随着border,以及Copy Sub-pixel(没接触过)
// 单纯的拷贝
NppStatus nppiCopy_8u_C3R(const Npp8u *pSrc,
int nSrcStep,
Npp8u *pDst,
int nDstStep,
NppiSize oSizeROI);
// 依据mask有选择性的进行拷贝
NppStatus nppiCopy_8u_C3MR(const Npp8u *pSrc,
int nSrcStep,
Npp8u *pDst,
int nDstStep,
NppiSize oSizeROI,
const Npp8u *pMask,
int nMaskStep);
// Channel Copy, 将一个多通道的某个通道拷贝到另外一个多通道图像的某一个channel
NppStatus nppiCopy_8u_C3CR(const Npp8u *pSrc,
int nSrcStep,
Npp8u *pDst,
int nDstStep,
NppiSize oSizeROI);
// Extract Channel Copy, 将一个多通道的某个通道拷贝到另外一个单通道的图像
NppStatus nppiCopy_8u_C3C1R(const Npp8u * pSrc,
int nSrcStep,
Npp8u *pDst,
int nDstStep,
NppiSize oSizeROI);
// Insert Channel Copy, 一个单通道的图像拷贝到多通道中的某一个通道
NppStatus nppiCopy_8u_C1C3R(const Npp8u * pSrc,
int nSrcStep,
Npp8u * pDst,
int nDstStep,
NppiSize oSizeROI);
// 剩下的接口平时接触较少,所以暂时不做详细介绍
#include
#include
#include
#include
#define CUDA_FREE(ptr) { if (ptr != nullptr) { cudaFree(ptr); ptr = nullptr; } }
int main() {
std::string directory = "../";
// =============== load image ===============
cv::Mat image_dog = cv::imread(directory + "dog.png");
cv::Mat image_dog_gray;
cv::cvtColor(image_dog, image_dog_gray, CV_RGB2GRAY);
int image_width = image_dog.cols;
int image_height = image_dog.rows;
int image_size = image_width * image_height;
// =============== device memory ===============
uint8_t *in_image, *in_img_gray;
cudaMalloc((void**)&in_image, image_size * 3 * sizeof(uint8_t));
cudaMalloc((void**)&in_img_gray, image_size * sizeof(uint8_t));
cudaMemcpy(in_image, image_dog.data, image_size * 3 * sizeof(uint8_t), cudaMemcpyHostToDevice);
cudaMemcpy(in_img_gray, image_dog_gray.data, image_size * sizeof(uint8_t), cudaMemcpyHostToDevice);
uint8_t *out_ptr1, *out_ptr2, *out_ptr3, *out_ptr4, *out_ptr5;
cudaMalloc((void**)&out_ptr1, image_size * 3 * sizeof(uint8_t)); // 三通道
cudaMalloc((void**)&out_ptr2, image_size * 3 * sizeof(uint8_t)); // 三通道
cudaMalloc((void**)&out_ptr3, image_size * 3 * sizeof(uint8_t)); // 三通道
cudaMalloc((void**)&out_ptr4, image_size * sizeof(uint8_t)); // 单通道
cudaMalloc((void**)&out_ptr5, image_size * 3 * sizeof(uint8_t)); // 三通道
// mask
cv::Mat mask = cv::Mat::zeros(image_height, image_width, CV_8UC1);
cv::Mat mask1 = cv::Mat::ones(image_height * 3 / 4, image_width * 3 / 4, CV_8UC1);
cv::Rect rc1 = cv::Rect(image_width / 4, image_height / 4, image_width * 3 / 4, image_height * 3 / 4);
mask1.copyTo(mask(rc1));
uint8_t *gpu_mask;
cudaMalloc((void**)&gpu_mask, image_size * sizeof(uint8_t));
cudaMemcpy(gpu_mask, mask.data, image_size * sizeof(uint8_t), cudaMemcpyHostToDevice);
NppiSize roi1, roi2;
roi1.width = image_width;
roi1.height = image_height;
roi2.width = image_width / 2;
roi2.height = image_height / 2;
cv::Mat out_image = cv::Mat::zeros(image_height, image_width, CV_8UC3);
cv::Mat out_single = cv::Mat::zeros(image_height, image_width, CV_8UC1);
NppStatus status;
// =============== nppiCopy_8u_C3R ===============
status = nppiCopy_8u_C3R(in_image, image_width * 3, out_ptr1, image_width * 3, roi1);
if (status != NPP_SUCCESS) {
std::cout << "[GPU] ERROR nppiCopy_8u_C3R failed, status = " << status << std::endl;
return false;
}
cudaMemcpy(out_image.data, out_ptr1, image_size * 3, cudaMemcpyDeviceToHost);
cv::imwrite(directory + "copy.jpg", out_image);
// =============== nppiCopy_8u_C3MR ===============
status = nppiCopy_8u_C3MR(in_image, image_width * 3, out_ptr2, image_width * 3, roi1, gpu_mask, image_width);
if (status != NPP_SUCCESS) {
std::cout << "[GPU] ERROR nppiCopy_8u_C3MR failed, status = " << status << std::endl;
return false;
}
cudaMemcpy(out_image.data, out_ptr2, image_size * 3, cudaMemcpyDeviceToHost);
cv::imwrite(directory + "copy_mask.jpg", out_image);
// =============== nppiCopy_8u_C3CR ===============
status = nppiCopy_8u_C3CR(in_image, image_width * 3, out_ptr3, image_width * 3, roi1);
if (status != NPP_SUCCESS) {
std::cout << "[GPU] ERROR nppiCopy_8u_C3CR failed, status = " << status << std::endl;
return false;
}
cudaMemcpy(out_image.data, out_ptr3, image_size * 3, cudaMemcpyDeviceToHost);
cv::imwrite(directory + "copy_channel.jpg", out_image);
// =============== nppiCopy_8u_C3C1R ===============
status = nppiCopy_8u_C3C1R(in_image, image_width * 3, out_ptr4, image_width, roi1);
if (status != NPP_SUCCESS) {
std::cout << "[GPU] ERROR nppiCopy_8u_C3C1R failed, status = " << status << std::endl;
return false;
}
cudaMemcpy(out_single.data, out_ptr4, image_size, cudaMemcpyDeviceToHost);
cv::imwrite(directory + "copy_channel_extract.jpg", out_single);
// =============== nppiCopy_8u_C1C3R ===============
status = nppiCopy_8u_C1C3R(in_img_gray, image_width, out_ptr5, image_width * 3, roi1);
if (status != NPP_SUCCESS) {
std::cout << "[GPU] ERROR nppiCopy_8u_C1C3R failed, status = " << status << std::endl;
return false;
}
cudaMemcpy(out_image.data, out_ptr5, image_size * 3, cudaMemcpyDeviceToHost);
cv::imwrite(directory + "copy_channel_insert.jpg", out_image);
// free
CUDA_FREE(in_image)
CUDA_FREE(in_img_gray)
CUDA_FREE(out_ptr1)
CUDA_FREE(out_ptr2)
CUDA_FREE(out_ptr3)
CUDA_FREE(out_ptr4)
CUDA_FREE(out_ptr5)
}
cmake_minimum_required(VERSION 3.20)
project(test)
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
find_package(CUDA REQUIRED)
include_directories(${CUDA_INCLUDE_DIRS})
file(GLOB CUDA_LIBS "/usr/local/cuda/lib64/*.so")
add_executable(test test.cpp)
target_link_libraries(test
${OpenCV_LIBS}
${CUDA_LIBS}
)
注意: