Yolov5网络构架实现
- import torch
- import torch.nn as nn
-
-
- class SiLU(nn.Module):
- @staticmethod
- def forward(x):
- return x * torch.sigmoid(x)
-
- def autopad(k, p=None):
- if p is None:
- p = k // 2 if isinstance(k, int) else [x // 2 for x in k]
- return p
-
- class Focus(nn.Module):
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
- super(Focus, self).__init__()
- self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
-
- def forward(self, x):
- # 320, 320, 12 => 320, 320, 64
- return self.conv(
- # 640, 640, 3 => 320, 320, 12
- torch.cat(
- [
- x[..., ::2, ::2],
- x[..., 1::2, ::2],
- x[..., ::2, 1::2],
- x[..., 1::2, 1::2]
- ], 1
- )
- )
-
- class Conv(nn.Module):
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
- super(Conv, self).__init__()
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
- self.bn = nn.BatchNorm2d(c2, eps=0.001, momentum=0.03)
- self.act = SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
-
- def forward(self, x):
- return self.act(self.bn(self.conv(x)))
-
- def fuseforward(self, x):
- return self.act(self.conv(x))
-
- class Bottleneck(nn.Module):
- # Standard bottleneck
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
- super(Bottleneck, self).__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_, c2, 3, 1, g=g)
- self.add = shortcut and c1 == c2
-
- def forward(self, x):
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
-
- class C3(nn.Module):
- # CSP Bottleneck with 3 convolutions
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
- super(C3, self).__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c1, c_, 1, 1)
- self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
- self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
- # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
-
- def forward(self, x):
- return self.cv3(torch.cat(
- (
- self.m(self.cv1(x)),
- self.cv2(x)
- )
- , dim=1))
-
- class SPP(nn.Module):
- # Spatial pyramid pooling layer used in YOLOv3-SPP
- def __init__(self, c1, c2, k=(5, 9, 13)):
- super(SPP, self).__init__()
- c_ = c1 // 2 # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
- self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
-
- def forward(self, x):
- x = self.cv1(x)
- return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
-
- class CSPDarknet(nn.Module):
- def __init__(self, base_channels, base_depth, phi, pretrained):
- super().__init__()
- #-----------------------------------------------#
- # 输入图片是640, 640, 3
- # 初始的基本通道base_channels是64
- #-----------------------------------------------#
-
- #-----------------------------------------------#
- # 利用focus网络结构进行特征提取
- # 640, 640, 3 -> 320, 320, 12 -> 320, 320, 64
- #-----------------------------------------------#
- self.stem = Focus(3, base_channels, k=3)
-
- #-----------------------------------------------#
- # 完成卷积之后,320, 320, 64 -> 160, 160, 128
- # 完成CSPlayer之后,160, 160, 128 -> 160, 160, 128
- #-----------------------------------------------#
- self.dark2 = nn.Sequential(
- # 320, 320, 64 -> 160, 160, 128
- Conv(base_channels, base_channels * 2, 3, 2),
- # 160, 160, 128 -> 160, 160, 128
- C3(base_channels * 2, base_channels * 2, base_depth),
- )
-
- #-----------------------------------------------#
- # 完成卷积之后,160, 160, 128 -> 80, 80, 256
- # 完成CSPlayer之后,80, 80, 256 -> 80, 80, 256
- # 在这里引出有效特征层80, 80, 256
- # 进行加强特征提取网络FPN的构建
- #-----------------------------------------------#
- self.dark3 = nn.Sequential(
- Conv(base_channels * 2, base_channels * 4, 3, 2),
- C3(base_channels * 4, base_channels * 4, base_depth * 3),
- )
-
- #-----------------------------------------------#
- # 完成卷积之后,80, 80, 256 -> 40, 40, 512
- # 完成CSPlayer之后,40, 40, 512 -> 40, 40, 512
- # 在这里引出有效特征层40, 40, 512
- # 进行加强特征提取网络FPN的构建
- #-----------------------------------------------#
- self.dark4 = nn.Sequential(
- Conv(base_channels * 4, base_channels * 8, 3, 2),
- C3(base_channels * 8, base_channels * 8, base_depth * 3),
- )
-
- #-----------------------------------------------#
- # 完成卷积之后,40, 40, 512 -> 20, 20, 1024
- # 完成SPP之后,20, 20, 1024 -> 20, 20, 1024
- # 完成CSPlayer之后,20, 20, 1024 -> 20, 20, 1024
- #-----------------------------------------------#
- self.dark5 = nn.Sequential(
- Conv(base_channels * 8, base_channels * 16, 3, 2),
- SPP(base_channels * 16, base_channels * 16),
- C3(base_channels * 16, base_channels * 16, base_depth, shortcut=False),
- )
- if pretrained:
- url = {
- 's' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_s_backbone.pth',
- 'm' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_m_backbone.pth',
- 'l' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_l_backbone.pth',
- 'x' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_x_backbone.pth',
- }[phi]
- checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", model_dir="./model_data")
- self.load_state_dict(checkpoint, strict=False)
- print("Load weights from ", url.split('/')[-1])
-
- def forward(self, x):
- x = self.stem(x)
- x = self.dark2(x)
- #-----------------------------------------------#
- # dark3的输出为80, 80, 256,是一个有效特征层
- #-----------------------------------------------#
- x = self.dark3(x)
- feat1 = x
- #-----------------------------------------------#
- # dark4的输出为40, 40, 512,是一个有效特征层
- #-----------------------------------------------#
- x = self.dark4(x)
- feat2 = x
- #-----------------------------------------------#
- # dark5的输出为20, 20, 1024,是一个有效特征层
- #-----------------------------------------------#
- x = self.dark5(x)
- feat3 = x
- return feat1, feat2, feat3