self.encoder_layer = nn.TransformerEncoderLayer( d_model=d_model, dim_feedforward=256, nhead=2)
所以说,这个nhead的意思,就是有window窗口的大小,也就是一个b由几个a得到
- #尝试使用permute函数进行测试:可以通过tensor张量直接调用
- import torch
- import numpy as np
- x = np.array([[[1,1,1],[2,2,2]],[[3,3,3],[4,4,4]]])
- y = torch.tensor(x)
- #y.shape
- z=y.permute(2,1,0)
- z.shape
- print(z) #permute之后变成了3*2*2的维度
- print(y) #本来是一个2*2*3从外到内的维度
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
-
-
- class Classifier(nn.Module):
- def __init__(self, d_model=80, n_spks=600, dropout=0.1):
- super().__init__()
- # Project the dimension of features from that of input into d_model.
- self.prenet = nn.Linear(40, d_model) #通过一个线性的输入层,从40个维度,变成d_model个
-
- #展示不需要使用这个conformer进行实验
- # TODO:
- # Change Transformer to Conformer.
- # https://arxiv.org/abs/2005.08100
- #这里是不需要自己设计 self-attention层的,因为transformer的encoder层用到self-attention层
- self.encoder_layer = nn.TransformerEncoderLayer(
- d_model=d_model, dim_feedforward=256, nhead=2 #输入维度是上面的d_model,输出维度是256,这2个nhead是啥?一个b由几个a得到
- )
- #下面这个暂时用不到
- # self.encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=2)
-
- # Project the the dimension of features from d_model into speaker nums.
- #predict_layer
- self.pred_layer = nn.Sequential( #这里其实就相当于是一个线性输出层了,最终输出的是一个n_soks维度600的向量
- nn.Linear(d_model, d_model),
- nn.ReLU(),
- nn.Linear(d_model, n_spks),
- )
-
- def forward(self, mels):
- """
- args:
- mels: (batch size, length, 40) #我来试图解释一下这个东西,反正就是一段声音信号处理后得到的3维tensor,最里面那一维是40
- return:
- out: (batch size, n_spks) #最后只要输出每个batch中的行数 + 每一行中的n_spks的数值
- """
- # out: (batch size, length, d_model) #原来out设置的3个维度的数据分别是batchsize ,
- out = self.prenet(mels) #通过一个prenet层之后,最里面的那一维空间 就变成了一个d_model维度
- # out: (length, batch size, d_model)
- out = out.permute(1, 0, 2) #利用permute将0维和1维进行交换
- # The encoder layer expect features in the shape of (length, batch size, d_model).
- out = self.encoder_layer(out)
- # out: (batch size, length, d_model)
- out = out.transpose(0, 1) #重新得到原来的维度,这次用transpose和上一次用permute没有区别
- # mean pooling
- stats = out.mean(dim=1) #对维度1(第二个维度)计算均值,也就是将整个向量空间-->转成1个数值
- #得到的是batch,d_model (len就是一行的数据,从这一行中取均值,就是所谓的均值池化)
-
- # out: (batch, n_spks)
- out = self.pred_layer(stats) #这里得到n_spks还不是one-hot vec
- return out
- import math
-
- import torch
- from torch.optim import Optimizer
- from torch.optim.lr_scheduler import LambdaLR
-
- #这部分的代码感觉有一点诡异,好像是设计了一个learning rate的warmup过程,算了,之后再回来阅读好了
-
-
- def get_cosine_schedule_with_warmup(
- optimizer: Optimizer,
- num_warmup_steps: int,
- num_training_steps: int,
- num_cycles: float = 0.5,
- last_epoch: int = -1,
- ):
- """
- Create a schedule with a learning rate that decreases following the values of the cosine function between the
- initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
- initial lr set in the optimizer.
- Args:
- optimizer (:class:`~torch.optim.Optimizer`):
- The optimizer for which to schedule the learning rate.
- num_warmup_steps (:obj:`int`):
- The number of steps for the warmup phase.
- num_training_steps (:obj:`int`):
- The total number of training steps.
- num_cycles (:obj:`float`, `optional`, defaults to 0.5):
- The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
- following a half-cosine).
- last_epoch (:obj:`int`, `optional`, defaults to -1):
- The index of the last epoch when resuming training.
- Return:
- :obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
- """
- def lr_lambda(current_step):
- # Warmup
- if current_step < num_warmup_steps:
- return float(current_step) / float(max(1, num_warmup_steps))
- # decadence
- progress = float(current_step - num_warmup_steps) / float(
- max(1, num_training_steps - num_warmup_steps)
- )
- return max(
- 0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))
- )
-
- return LambdaLR(optimizer, lr_lambda, last_epoch)
- import torch
-
- #这里面其实就是原来train部分的代码处理一个batch的操作
-
- def model_fn(batch, model, criterion, device): #这个函数的参数是batch数据,model,loss_func,设备
- """Forward a batch through the model."""
-
- mels, labels = batch #获取mels参数 和 labels参数
- mels = mels.to(device)
- labels = labels.to(device)
-
- outs = model(mels) #得到的输出结果
-
- loss = criterion(outs, labels) #通过和labels进行比较得到loss
-
- # Get the speaker id with highest probability.
- preds = outs.argmax(1) #按照列的方向 计算出最大的索引位置
- # Compute accuracy.
- accuracy = torch.mean((preds == labels).float()) #通过将preds和labels进行比较得到acc的数值
-
- return loss, accuracy
- from tqdm import tqdm
- import torch
-
-
- def valid(dataloader, model, criterion, device): #感觉就是整个validationset中的数据都进行了操作
- """Validate on validation set."""
-
- model.eval() #开启evaluation模式
- running_loss = 0.0
- running_accuracy = 0.0
- pbar = tqdm(total=len(dataloader.dataset), ncols=0, desc="Valid", unit=" uttr") #创建进度条,实现可视化process_bar
-
- for i, batch in enumerate(dataloader): #下标i,batch数据存到batch中
- with torch.no_grad(): #先说明不会使用SGD
- loss, accuracy = model_fn(batch, model, criterion, device) #调用上面定义的batch处理函数得到loss 和 acc
- running_loss += loss.item()
- running_accuracy += accuracy.item()
-
- pbar.update(dataloader.batch_size) #这些处理进度条的内容可以暂时不用管
- pbar.set_postfix(
- loss=f"{running_loss / (i+1):.2f}",
- accuracy=f"{running_accuracy / (i+1):.2f}",
- )
-
- pbar.close()
- model.train()
-
- return running_accuracy / len(dataloader) #返回正确率
- from tqdm import tqdm
-
- import torch
- import torch.nn as nn
- from torch.optim import AdamW
- from torch.utils.data import DataLoader, random_split
-
-
- def parse_args(): #定义一个给config赋值的函数
- """arguments"""
- config = {
- "data_dir": "./Dataset",
- "save_path": "model.ckpt",
- "batch_size": 32,
- "n_workers": 1, #这个参数太大的时候,我的这个会error
- "valid_steps": 2000,
- "warmup_steps": 1000,
- "save_steps": 10000,
- "total_steps": 70000,
- }
-
- return config
-
-
- def main( #可以直接用上面定义那些参数作为这个main里面的参数
- data_dir,
- save_path,
- batch_size,
- n_workers,
- valid_steps,
- warmup_steps,
- total_steps,
- save_steps,
- ):
- """Main function."""
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- print(f"[Info]: Use {device} now!")
-
- train_loader, valid_loader, speaker_num = get_dataloader(data_dir, batch_size, n_workers) #获取所需的data,调用get_dataloader函数
- train_iterator = iter(train_loader) #定义一个train_data的迭代器
- print(f"[Info]: Finish loading data!",flush = True)
-
- model = Classifier(n_spks=speaker_num).to(device) #构造一个model的实例
- criterion = nn.CrossEntropyLoss() #分别构造loss_func 和 optimizer的实例
- optimizer = AdamW(model.parameters(), lr=1e-3)
- scheduler = get_cosine_schedule_with_warmup(optimizer, warmup_steps, total_steps) #构造warmup的实例
- print(f"[Info]: Finish creating model!",flush = True)
-
- best_accuracy = -1.0
- best_state_dict = None
-
- pbar = tqdm(total=valid_steps, ncols=0, desc="Train", unit=" step") #process_bar相关的东西,不用管它
-
- for step in range(total_steps): #一共需要的步数进行for循环
- # Get data
- try:
- batch = next(train_iterator) #从train_data中获取到下一个batch的数据
- except StopIteration:
- train_iterator = iter(train_loader)
- batch = next(train_iterator)
-
- loss, accuracy = model_fn(batch, model, criterion, device) #传递对应的数据、模型参数,得到这个batch的loss和acc
- batch_loss = loss.item()
- batch_accuracy = accuracy.item()
-
- # Updata model
- loss.backward()
- optimizer.step()
- scheduler.step()
- optimizer.zero_grad() #更新进行Gradient descend 更新模型,并且将grad清空
-
- # Log
- pbar.update() #process_bar的东西先不管
- pbar.set_postfix(
- loss=f"{batch_loss:.2f}",
- accuracy=f"{batch_accuracy:.2f}",
- step=step + 1,
- )
-
- # Do validation
- if (step + 1) % valid_steps == 0:
- pbar.close()
-
- valid_accuracy = valid(valid_loader, model, criterion, device) #调用valid函数计算这一次validation的正确率
-
- # keep the best model
- if valid_accuracy > best_accuracy: #总是保持最好的valid_acc
- best_accuracy = valid_accuracy
- best_state_dict = model.state_dict()
-
- pbar = tqdm(total=valid_steps, ncols=0, desc="Train", unit=" step")
-
- # Save the best model so far.
- if (step + 1) % save_steps == 0 and best_state_dict is not None:
- torch.save(best_state_dict, save_path) #保存最好的model参数
- pbar.write(f"Step {step + 1}, best model saved. (accuracy={best_accuracy:.4f})")
-
- pbar.close()
-
-
- if __name__ == "__main__": #调用这个main函数
- main(**parse_args())
七、inference部分的test内容:
- import os
- import json
- import torch
- from pathlib import Path
- from torch.utils.data import Dataset
-
-
- class InferenceDataset(Dataset):
- def __init__(self, data_dir):
- testdata_path = Path(data_dir) / "testdata.json"
- metadata = json.load(testdata_path.open())
- self.data_dir = data_dir
- self.data = metadata["utterances"]
-
- def __len__(self):
- return len(self.data)
-
- def __getitem__(self, index):
- utterance = self.data[index]
- feat_path = utterance["feature_path"]
- mel = torch.load(os.path.join(self.data_dir, feat_path))
-
- return feat_path, mel
-
-
- def inference_collate_batch(batch):
- """Collate a batch of data."""
- feat_paths, mels = zip(*batch)
-
- return feat_paths, torch.stack(mels)
- import json
- import csv
- from pathlib import Path
- from tqdm.notebook import tqdm
-
- import torch
- from torch.utils.data import DataLoader
-
- def parse_args():
- """arguments"""
- config = {
- "data_dir": "./Dataset",
- "model_path": "./model.ckpt",
- "output_path": "./output.csv",
- }
-
- return config
-
-
- def main(
- data_dir,
- model_path,
- output_path,
- ):
- """Main function."""
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- print(f"[Info]: Use {device} now!")
-
- mapping_path = Path(data_dir) / "mapping.json"
- mapping = json.load(mapping_path.open())
-
- dataset = InferenceDataset(data_dir)
- dataloader = DataLoader(
- dataset,
- batch_size=1,
- shuffle=False,
- drop_last=False,
- num_workers=8,
- collate_fn=inference_collate_batch,
- )
- print(f"[Info]: Finish loading data!",flush = True)
-
- speaker_num = len(mapping["id2speaker"])
- model = Classifier(n_spks=speaker_num).to(device)
- model.load_state_dict(torch.load(model_path))
- model.eval()
- print(f"[Info]: Finish creating model!",flush = True)
-
- results = [["Id", "Category"]]
- for feat_paths, mels in tqdm(dataloader):
- with torch.no_grad():
- mels = mels.to(device)
- outs = model(mels) #调用model计算得到outs
- preds = outs.argmax(1).cpu().numpy() #对outs进行argmax,得到的索引存储到preds中
- for feat_path, pred in zip(feat_paths, preds):
- results.append([feat_path, mapping["id2speaker"][str(pred)]]) #将每一次的结果存放的到results中
-
- with open(output_path, 'w', newline='') as csvfile:
- writer = csv.writer(csvfile)
- writer.writerows(results)
-
-
- if __name__ == "__main__":
- main(**parse_args())
inference部分的代码暂时就看看好了,这个2022版本的数据在github上404了。。。
- import os
- import json
- import torch
- import random
- from pathlib import Path
- from torch.utils.data import Dataset
- from torch.nn.utils.rnn import pad_sequence
-
-
- class myDataset(Dataset):
- def __init__(self, data_dir, segment_len=128):
- self.data_dir = data_dir
- self.segment_len = segment_len
-
- # Load the mapping from speaker neme to their corresponding id.
- mapping_path = Path(data_dir) / "mapping.json"
- mapping = json.load(mapping_path.open()) #将这个json文件load到变量mapping中
- self.speaker2id = mapping["speaker2id"] #其实speaker2id这个变量就是mapping里面的内容
- #其实也就是原来数据集中的"id00464"变成我们这里的600个人的数据集的0-599的id
-
- # Load metadata of training data.
- metadata_path = Path(data_dir) / "metadata.json"
- metadata = json.load(open(metadata_path))["speakers"]
- #和上面类似的操作,这里的metadata就是打开那个json文件中的内容
- #我觉得按照他上课的说法,这里的n_mels的意思就是每个特征音频长度取出40就好了,?对吗
- #然后,这个json文件里面的内容就是不同speakerid所发声的音频文件的路径和mel_len
-
-
- # Get the total number of speaker.
- self.speaker_num = len(metadata.keys())
- self.data = [] #data就是这个class中的数据
- for speaker in metadata.keys(): #逐个遍历每个speaker
- for utterances in metadata[speaker]: #遍历每个speaker的每一段录音
- self.data.append([utterances["feature_path"], self.speaker2id[speaker]])#将每一段录音按照 (路径,新id)存入data变量中
-
- def __len__(self):
- return len(self.data) #返回总共的data数量
-
- def __getitem__(self, index):
- feat_path, speaker = self.data[index] #从下标位置获取到该段录音的路径 和 speakerid
- # Load preprocessed mel-spectrogram.
- mel = torch.load(os.path.join(self.data_dir, feat_path)) #从路径中获取到该mel录音文件
-
- # Segmemt mel-spectrogram into "segment_len" frames.
- if len(mel) > self.segment_len: #如果大于128这个seg , 一些处理....
- # Randomly get the starting point of the segment.
- start = random.randint(0, len(mel) - self.segment_len)
- # Get a segment with "segment_len" frames.
- mel = torch.FloatTensor(mel[start:start+self.segment_len])
- else:
- mel = torch.FloatTensor(mel)
- # Turn the speaker id into long for computing loss later.
- speaker = torch.FloatTensor([speaker]).long() #将speakerid转换为long类型
- return mel, speaker #返回这个录音mel文件和对应的speakerid
-
- def get_speaker_number(self):
- return self.speaker_num
这里附带我下载的文件资源路径:
下面dropbox的链接是可以使用的
- !wget https://www.dropbox.com/s/vw324newiku0sz0/Dataset.tar.gz.aa?d1=0
- !wget https://www.dropbox.com/s/vw324newiku0sz0/Dataset.tar.gz.aa?d1=0
- !wget https://www.dropbox.com/s/z840g69e71nkayo/Dataset.tar.gz.ab?d1=0
- !wget https://www.dropbox.com/s/h1081e1ggonio81/Dataset.tar.gz.ac?d1=0
- !wget https://www.dropbox.com/s/fh3zd8ow668c4th/Dataset.tar.gz.ad?d1=0
- !wget https://www.dropbox.com/s/ydzygoy2pv6gw9d/Dataset.tar.gz.ae?d1=0
- !cat Dataset.tar.gz.* | tar zxvf -
这样才能下载到你需要的数据
怎么说呢?最后的最后,还是这个dropbox中下载的内容不全,少了一些文件
有一个解决的方法是,直接在kaggle上面下载那个5.2GB的压缩包,不过解压之后可能有70GB,文件似乎太大了,而且下载之后,只要全部解压导入到Dataset文件夹就可以运行了
方法三:尝试一下那个GoogleDrive上面的文件 :
失败了,算了还是自己老老实实下载然后上传吧
- !gdown --id '1CtHZhJ-mTpNsO-MqvAPIi4Yrt3oSBXYV' --output Dataset.zip
- !gdown --id '14hmoMgB1fe6v50biIceKyndyeYABGrRq' --output Dataset.zip
- !gdown --id '1e9x-Pj13n7-9tK9LS_WjiMo21ru4UBH9' --output Dataset.zip
- !gdown --id '10TC0g46bcAz_jkiM165zNmwttT4RiRgY' --output Dataset.zip
- !gdown --id '1MUGBvG_Jjq00C2JYHuyV3B01vaf1kWIm' --output Dataset.zip
- !gdown --id '18M91P5DHwILNy01ssZ57AiPOR0OwutOM' --output Dataset.zip
- !unzip Dataset.zip