本文是LLM系列文章,针对《In-Context Retrieval-Augmented Language Models》的翻译。
摘要
检索增强语言建模(RALM)方法在生成过程中对基础语料库中的相关文档设置语言模型(LM),可以显著提高语言建模性能。此外,它们可以缓解事实上不准确的文本生成问题,并提供自然的来源归因机制。现有的RALM方法侧重于修改LM体系结构,以促进外部信息的合并,从而使部署显著复杂化。本文考虑了一个简单的替代方案,我们称之为上下文RALM:保持LM架构不变,并为输入准备基础文档,而不需要对LM进行任何进一步的训练。我们发现,建立在