基础
自然语言处理(NLP)
自然语言处理PaddleNLP-词向量应用展示
自然语言处理(NLP)-前预训练时代的自监督学习
自然语言处理PaddleNLP-预训练语言模型及应用
自然语言处理PaddleNLP-文本语义相似度计算(ERNIE-Gram)
自然语言处理PaddleNLP-词法分析技术及其应用
自然语言处理PaddleNLP-快递单信息抽取
理解
自然语言处理PaddleNLP-信息抽取技术及应用
自然语言处理PaddleNLP-基于预训练模型完成实体关系抽取--实践
自然语言处理PaddleNLP-情感分析技术及应用-理论
自然语言处理PaddleNLP-情感分析技术及应用SKEP-实践
问答
自然语言处理PaddleNLP-检索式文本问答-理论
自然语言处理PaddleNLP-结构化数据问答-理论
翻译
自然语言处理PaddleNLP-文本翻译技术及应用-理论
自然语言处理PaddleNLP-机器同传技术及应用-理论
对话
自然语言处理PaddleNLP-任务式对话系统-理论
自然语言处理PaddleNLP-开放域对话系统-理论
产业实践
自然语言处理 Paddle NLP - 预训练模型产业实践课-理论
什么是语言理解?
关于疫情的一段对话:
-
中国:我们这边快完了
-
欧洲:我们这边快完了
-
中国:我们好多了
-
欧洲:我们好多了
挑战:
- 语言的复杂性和多样性
- 多义/同义/歧义现象
- 灵活多变的表达形式
- 语言背后的环境知识
- 以前没钱买华为,现在没钱买华为
语言理解的四个粒度:
- 字的理解 例如:藏
- 词的理解 例如:苹果
- 句子的理解 例如:我们这边快完了
- 篇章的理解 例如:贸易制裁似乎成了美国政府在对华关系中惯用的大棒。然而,这大棒果真如美国政府所希望的那样灵验吗?
好的表示是实现语言理解的基础:一个好的表示,是要具备通用涵义,并且与具体任务无关,是时又能根据具体任务,提供有用信息
理解是针对任务的理解:字词,关注局部信息;句子篇章,关注文本的全局信息
CBOW:基于临近词(上下文)预测词
Skip-Ngram:基于词预测临近词(上下文)
基于预训练的语义理解技术
ELMo:第一个现代的语义理解模型
利用两个LSTM,分别从左到右,从右到左的语言模型建模,实现建模上下文信息的目的。
两层LSTM:从低层到高层,逐个获取不同层次的语言信息,从最低层单词特征,到最高层语文特征
在获取了预训练模型特征以后,如何应用到具体的任务中。
ELMo:采用了 Feature-Based 方式进行应用
加权相加参数
ELMo 不仅解决了多义词的问题,而且可以将词性对应起来
ELMo:有什么缺点?
-
问题1:不完全双向预训练
模型的前向和后向LSTM两个模型是分别训练的,仅在Loss Function阶段进行了结合。 -
问题2:需进行任务相关网络结构设计(GPT可解决网格设计问题)
每种类型的下游任务都需要进行特定的网络结构设计和搭建 -
问题3:仅有词向量,无句向量
ELMo在预训练阶段仅学习了语言模型,无句向量学习任务
GPT:被BERT光芒掩盖的工作
对BERT的诞生,起到了非常明显的推动作用
Pre-training 作为 下游任务的一部分参与任务学习,大量减少下游任务网络中新增参数的数量。同时,下游任务的网络,相比较预训练网络,也只有少量结构上的变动,这样会节省大量时间
对于分类任务:模型只需要在输入文本上加上起始(Start)和终结(Extract)的符号,并在网络后端新增一个分类器(FC)。
对于句子判断:如语言识别,两个句子中增加分隔符就可以了。
对于文本相似度判断、多项选择:只需要少量改动,就能实现 Fine-Tuning 过程
GPT
优点:带来了明显的效果提升,也极大的简化了任务网络相关的结构
缺点:
- 单向预训练
预训练阶段仅采用传统单向语言模型作为训练目标 - 仅有词向量,无句向量
GPT在预训练阶段仅学习了语言模型,无句向量学习任务
BERT:预训练领域的里程碑式突破
Pre-training阶段
- 延用了GPT 网络结构,使用了12层 Transformer Encoder
- 交互式式双向语言模型建模(LM -> Auto-Encoder)
- 引入sentence-level预训练任务
- 更大规模预训练数据:BooksCorpus + Wikipedia(+2.5billion)
Pre-training 目标:
同时训练token-level & sentence-leveltask
- Mask-LM task(Mask token)
15% mask概率,在pre-training阶段实现交互式双向 - Next-sentence句对预测任务
预测当前句的下一句话
BERT:Pre-training 策略分析
BERT Mast-LM ,Mask 力度是 Token(单个字)
BERT 如何将自己的预训练模型,应用到下游任务?使用了简单粗暴的方式:伪结果论
BERT缺点
BERTmask(sub-word)lm任务存在的问题:
- Word哈尔滨;sub-word哈##尔##滨
- Sub-word预测可以通过word的局部信息完成
- 模型缺乏全局建模信息的“动力”
难以学到词、短语、实体的完整语义
ERNIE:基于知识增强的语义理解模型(百度)
将token 力度扩展到了 word 或 entity,使用了百度自建的语义库
ERNIE 在 Fine-tuning 使用了和 BERT 完全一致的方式
2.0 在预训练阶段,引入了更多的预训练任务
如何在学习新知识的同时,不忘旧知识
在预训练阶段,不断进行任务的叠加训练
预训练模型在NLP经典任务的应用
NLP部分经典任务总览
预训练语言模型在下游任务的优势
- 更少的标注数据
- 更高的任务效果
- 更简单的网络结构适配
预训练模型,不是越大越好
预训练模型,如何达到收敛的状态?一直是一个难以界定的范围,越训越大,很难做到预训练充分的结果。目前常规采取的方式是,让它一直训着,抽取实时对预训练模型中产生的中间模型,进行一个具体任务验证,随时采取一个文本匹配任务进行 Fine-Tuning 验证,如果预训练后期,发现了在很长一段时间内,在这样一个验证的下游任务上,得到的 Fine-Tuning 结果,基本持平,我们就认为这个模型达到了一个收敛的状态,或者说局部收敛的状态,这时候就可以给它停下来了。没有一个特别规范的指标