• Linux reset子系统


    文章代码分析基于linux-5.19.13,架构基于aarch64(ARM64)。

    1. 前言

    复杂IC内部有很多具有独立功能的硬件模块,例如CPU cores、GPU cores、USB控制器、MMC控制器、等等,出于功耗、稳定性等方面的考虑,有些IC在内部为这些硬件模块设计了复位信号(reset signals),软件可通过寄存器(一般1个bit控制1个硬件)控制这些硬件模块的复位状态。
    Linux kernel为了方便设备驱动的编写,抽象出一个简单的软件框架----reset framework,为reset的provider提供统一的reset资源管理手段,并为reset的consumer(各个硬件模块)提供便捷、统一的复位控制API。

    2. 前言

    reset子系统也分为了consumer和provider,结构体关系如下:

    3. consumer

    对于一个具体的硬件模块,它的要求很简单:复位我的硬件模块,而不必关注具体复位的手段(例如控制哪个寄存器的哪个bit位,等等)。

    Linux kernel基于device tree提供了对应的reset framework:

    1. 首先,提供描述系统中reset资源的方法(参考provider的介绍),这样consumer可以基于这种描述,在自己的dts node中引用所需的reset信号。

    2. 然后,consumer设备在自己的dts node中使用“resets”、“reset-names”等关键字声明所需的reset的资源,例如("resets"字段的具体格式由reset provider决定):

    device {
    resets = <&rst 20>;
    reset-names = "reset";
    };
    This represents a device with a single reset signal named "reset".
    bus {
    resets = <&rst 10> <&rst 11> <&rst 12> <&rst 11>;
    reset-names = "i2s1", "i2s2", "dma", "mixer";
    };
    This represents a bus that controls the reset signal of each of four sub- ordinate devices. Consider for example a bus that fails to operate unless no child device has reset asserted.
    1. 最后,consumer driver在需要的时候,可以调用下面的API复位自己(具体可参考"include\linux\reset.h"):
    • 只有一个reset信号的话,可以使用最简单的device_reset API
    static inline int __must_check device_reset(struct device *dev)
    • 如果需要更为复杂的控制(例如有多个reset信号、需要控制处于reset状态的长度的等),可以使用稍微复杂的API
    /* 通过reset_control_get或者devm_reset_control_get获得reset句柄 */
    struct reset_control *reset_control_get(struct device *dev, const char *id);
    struct reset_control *devm_reset_control_get(struct device *dev, const char *id);
    /* 通过reset_control_put释放reset句柄 */
    void reset_control_put(struct reset_control *rstc);
    /* 通过reset_control_reset进行复位,或者通过reset_control_assert使设备处于复位生效状态,通过reset_control_deassert使复位失效 */
    int reset_control_reset(struct reset_control *rstc); /先复位,延迟一会,然后解复位
    int reset_control_assert(struct reset_control *rstc); //复位
    int reset_control_deassert(struct reset_control *rstc);//解复位

    4. provider

    kernel为reset provider提供的API位于"include/linux/reset-controller.h"中,很简单,无非就是:创建并填充reset controller设备(struct reset_controller_dev),并调用相应的接口:

    • reset_controller_register //注册reset_controller
    • reset_controller_unregister //注销reset_controller

    reset controller的抽象也很简单:

    /**
    * struct reset_controller_dev - reset controller entity that might
    * provide multiple reset controls
    * @ops: a pointer to device specific struct reset_control_ops
    * @owner: kernel module of the reset controller driver
    * @list: internal list of reset controller devices
    * @reset_control_head: head of internal list of requested reset controls
    * @dev: corresponding driver model device struct
    * @of_node: corresponding device tree node as phandle target
    * @of_reset_n_cells: number of cells in reset line specifiers
    * @of_xlate: translation function to translate from specifier as found in the
    * device tree to id as given to the reset control ops, defaults
    * to :c:func:`of_reset_simple_xlate`.
    * @nr_resets: number of reset controls in this reset controller device
    */
    struct reset_controller_dev {
    const struct reset_control_ops *ops;//ops提供reset操作的实现,基本上是reset provider的所有工作量。
    struct module *owner;
    struct list_head list;////全局链表,复位控制器注册后挂载到全局链表
    struct list_head reset_control_head;////各个模块复位的链表头
    struct device *dev;
    struct device_node *of_node;
    int of_reset_n_cells;////用于解析consumer device dts node中的“resets = <>; ”节点,指示dts中引用时,需要几个参数
    int (*of_xlate)(struct reset_controller_dev *rcdev,
    const struct of_phandle_args *reset_spec);//用于解析consumer device dts node中的“resets = <>; ”节点
    unsigned int nr_resets;//该reset controller所控制的reset信号的个数
    };

    struct reset_control_ops也比较单纯,如下:

    /**
    * struct reset_control_ops - reset controller driver callbacks
    *
    * @reset: for self-deasserting resets, does all necessary
    * things to reset the device
    * @assert: manually assert the reset line, if supported
    * @deassert: manually deassert the reset line, if supported
    * @status: return the status of the reset line, if supported
    */
    struct reset_control_ops {
    int (*reset)(struct reset_controller_dev *rcdev, unsigned long id); //控制设备完成一次完整的复位过程
    int (*assert)(struct reset_controller_dev *rcdev, unsigned long id); //控制设备reset状态的生效
    int (*deassert)(struct reset_controller_dev *rcdev, unsigned long id);//控制设备reset状态的失效。
    int (*status)(struct reset_controller_dev *rcdev, unsigned long id); //复位状态查询
    };

    5. reset驱动的设备树描述总结

    5.1 对于provider

    reset:reset-controller{
    compatible = "xx,xx-reset";
    reg = <0x0 0x30390000 0x0 0x10000>;
    #reset-cells = <1>;
    };

    上述是一个reset控制器的节点,0x30390000 是寄存器基址,0x1000是映射大小。"#reset-cells"代表引用该reset时需要的cells个数。

    5.2 对于consumer

    例如,#reset-cells = <1>; 则正确引用为:

    mmc:mmc@0x12345678{
    ......
    resets = <&reset 0>;//0代表reset设备id,id是自定义的,但是不能超过reset驱动中指定的设备个数
    ......
    };

    6. 开源reset驱动实例

    6.1 实例1(比较容易理解)

    设备树: arch/arm/boot/dts/imx7d.dtsi

    pcie: pcie@0x33800000 {
    compatible = "fsl,imx7d-pcie", "snps,dw-pcie";
    ....
    resets = <&src IMX7_RESET_PCIEPHY>,
    <&src IMX7_RESET_PCIE_CTRL_APPS_EN>;
    reset-names = "pciephy", "apps";
    status = "disabled";
    };

    驱动代码: drivers/reset/reset-imx7.c

    ...
    struct imx7_src {
    struct reset_controller_dev rcdev;
    struct regmap *regmap;
    };
    enum imx7_src_registers {
    SRC_A7RCR0 = 0x0004,
    SRC_M4RCR = 0x000c,
    SRC_ERCR = 0x0014,
    SRC_HSICPHY_RCR = 0x001c,
    SRC_USBOPHY1_RCR = 0x0020,
    SRC_USBOPHY2_RCR = 0x0024,
    SRC_MIPIPHY_RCR = 0x0028,
    SRC_PCIEPHY_RCR = 0x002c,
    SRC_DDRC_RCR = 0x1000,
    };
    struct imx7_src_signal {
    unsigned int offset, bit;
    };
    static const struct imx7_src_signal imx7_src_signals[IMX7_RESET_NUM] = {
    [IMX7_RESET_A7_CORE_POR_RESET0] = { SRC_A7RCR0, BIT(0) },
    [IMX7_RESET_A7_CORE_POR_RESET1] = { SRC_A7RCR0, BIT(1) },
    [IMX7_RESET_A7_CORE_RESET0] = { SRC_A7RCR0, BIT(4) },
    [IMX7_RESET_A7_CORE_RESET1] = { SRC_A7RCR0, BIT(5) },
    [IMX7_RESET_A7_DBG_RESET0] = { SRC_A7RCR0, BIT(8) },
    [IMX7_RESET_A7_DBG_RESET1] = { SRC_A7RCR0, BIT(9) },
    ...
    };
    static struct imx7_src *to_imx7_src(struct reset_controller_dev *rcdev)
    {
    return container_of(rcdev, struct imx7_src, rcdev);
    }
    static int imx7_reset_set(struct reset_controller_dev *rcdev,
    unsigned long id, bool assert)
    {
    struct imx7_src *imx7src = to_imx7_src(rcdev);
    const struct imx7_src_signal *signal = &imx7_src_signals[id];
    unsigned int value = assert ? signal->bit : 0;
    switch (id) {
    case IMX7_RESET_PCIEPHY:
    /*
    * wait for more than 10us to release phy g_rst and
    * btnrst
    */
    if (!assert)
    udelay(10);
    break;
    case IMX7_RESET_PCIE_CTRL_APPS_EN:
    value = (assert) ? 0 : signal->bit;
    break;
    }
    return regmap_update_bits(imx7src->regmap,
    signal->offset, signal->bit, value);
    }
    static int imx7_reset_assert(struct reset_controller_dev *rcdev,
    unsigned long id)
    {
    return imx7_reset_set(rcdev, id, true);
    }
    static int imx7_reset_deassert(struct reset_controller_dev *rcdev,
    unsigned long id)
    {
    return imx7_reset_set(rcdev, id, false);
    }
    static const struct reset_control_ops imx7_reset_ops = {
    .assert = imx7_reset_assert,
    .deassert = imx7_reset_deassert,
    };
    static int imx7_reset_probe(struct platform_device *pdev)
    {
    struct imx7_src *imx7src;
    struct device *dev = &pdev->dev;
    struct regmap_config config = { .name = "src" };
    imx7src = devm_kzalloc(dev, sizeof(*imx7src), GFP_KERNEL);
    if (!imx7src)
    return -ENOMEM;
    imx7src->regmap = syscon_node_to_regmap(dev->of_node);
    if (IS_ERR(imx7src->regmap)) {
    dev_err(dev, "Unable to get imx7-src regmap");
    return PTR_ERR(imx7src->regmap);
    }
    regmap_attach_dev(dev, imx7src->regmap, &config);
    imx7src->rcdev.owner = THIS_MODULE;
    imx7src->rcdev.nr_resets = IMX7_RESET_NUM;
    imx7src->rcdev.ops = &imx7_reset_ops;
    imx7src->rcdev.of_node = dev->of_node;
    return devm_reset_controller_register(dev, &imx7src->rcdev);
    }
    static const struct of_device_id imx7_reset_dt_ids[] = {
    { .compatible = "fsl,imx7d-src", },
    { /* sentinel */ },
    };
    static struct platform_driver imx7_reset_driver = {
    .probe = imx7_reset_probe,
    .driver = {
    .name = KBUILD_MODNAME,
    .of_match_table = imx7_reset_dt_ids,
    },
    };
    builtin_platform_driver(imx7_reset_driver);

    6.2 实例2(在gpio子系统中嵌套reset子系统)

    设备树: arc/arm64/boot/dts/myzr/myimx8mm.dts

    &pcie0{
    pinctrl-names = "default";
    pinctrl-0 = <&pinctrl_i2c4_pcieclk>, <&pinctrl_gpio1_pciendis>, <&pinctrl_sd2_pciewake>, <&pinctrl_sai2_pcienrst>;
    disable-gpio = <&gpio1 5 GPIO_ACTIVE_LOW>;
    reset-gpio = <&gpio4 21 GPIO_ACTIVE_LOW>;
    ext_osc = <1>;
    status = "okay";
    };

    驱动代码: drivers/reset/gpio-reset.c

    ...
    struct gpio_reset_data {
    struct reset_controller_dev rcdev;
    unsigned int gpio;
    bool active_low;
    s32 delay_us;
    s32 post_delay_ms;
    };
    static void gpio_reset_set(struct reset_controller_dev *rcdev, int asserted)
    {
    struct gpio_reset_data *drvdata = container_of(rcdev,
    struct gpio_reset_data, rcdev);
    int value = asserted;
    if (drvdata->active_low)
    value = !value;
    gpio_set_value_cansleep(drvdata->gpio, value);
    }
    static int gpio_reset(struct reset_controller_dev *rcdev, unsigned long id)
    {
    struct gpio_reset_data *drvdata = container_of(rcdev,
    struct gpio_reset_data, rcdev);
    if (drvdata->delay_us < 0)
    return -ENOSYS;
    gpio_reset_set(rcdev, 1);
    udelay(drvdata->delay_us);
    gpio_reset_set(rcdev, 0);
    if (drvdata->post_delay_ms < 0)
    return 0;
    msleep(drvdata->post_delay_ms);
    return 0;
    }
    static int gpio_reset_assert(struct reset_controller_dev *rcdev,
    unsigned long id)
    {
    gpio_reset_set(rcdev, 1);
    return 0;
    }
    static int gpio_reset_deassert(struct reset_controller_dev *rcdev,
    unsigned long id)
    {
    gpio_reset_set(rcdev, 0);
    return 0;
    }
    static struct reset_control_ops gpio_reset_ops = {
    .reset = gpio_reset,
    .assert = gpio_reset_assert,
    .deassert = gpio_reset_deassert,
    };
    static int of_gpio_reset_xlate(struct reset_controller_dev *rcdev,
    const struct of_phandle_args *reset_spec)
    {
    if (WARN_ON(reset_spec->args_count != 0))
    return -EINVAL;
    return 0;
    }
    static int gpio_reset_probe(struct platform_device *pdev)
    {
    ...
    drvdata = devm_kzalloc(&pdev->dev, sizeof(*drvdata), GFP_KERNEL);
    ...
    drvdata->rcdev.of_node = np;
    drvdata->rcdev.owner = THIS_MODULE;
    drvdata->rcdev.nr_resets = 1; ////该reset controller所控制的reset信号的个数
    drvdata->rcdev.ops = &gpio_reset_ops; //ops提供reset操作的实现。
    drvdata->rcdev.of_xlate = of_gpio_reset_xlate;
    reset_controller_register(&drvdata->rcdev); //注册reset controller
    return 0;
    }
    static int gpio_reset_remove(struct platform_device *pdev)
    {
    struct gpio_reset_data *drvdata = platform_get_drvdata(pdev);
    reset_controller_unregister(&drvdata->rcdev);
    return 0;
    }
    static struct of_device_id gpio_reset_dt_ids[] = {
    { .compatible = "gpio-reset" },
    { }
    };
    #ifdef CONFIG_PM_SLEEP
    static int gpio_reset_suspend(struct device *dev)
    {
    pinctrl_pm_select_sleep_state(dev);
    return 0;
    }
    static int gpio_reset_resume(struct device *dev)
    {
    pinctrl_pm_select_default_state(dev);
    return 0;
    }
    #endif
    static const struct dev_pm_ops gpio_reset_pm_ops = {
    SET_LATE_SYSTEM_SLEEP_PM_OPS(gpio_reset_suspend, gpio_reset_resume)
    };
    static struct platform_driver gpio_reset_driver = {
    .probe = gpio_reset_probe,
    .remove = gpio_reset_remove,
    .driver = {
    .name = "gpio-reset",
    .owner = THIS_MODULE,
    .of_match_table = of_match_ptr(gpio_reset_dt_ids),
    .pm = &gpio_reset_pm_ops,
    },
    };
    static int __init gpio_reset_init(void)
    {
    return platform_driver_register(&gpio_reset_driver);
    }
    arch_initcall(gpio_reset_init);
    static void __exit gpio_reset_exit(void)
    {
    platform_driver_unregister(&gpio_reset_driver);
    }
    ...

    7. reset驱动的实质

    操作soc对应的reset寄存器,以实现内核IP的复位,或者操作gpio管脚的电平,间接复位接到该pin脚的从设备。

    参考

    [1] Documentation/devicetree/bindings/reset/reset.txt
    [2] Linux reset framework
    [2] Linux reset子系统及驱动实例

  • 相关阅读:
    第十八课、Qt 下载、安装与配置
    Redis 会被Dragonfly替代?
    80. 删除有序数组中的重复项 II
    SpringCloud总结
    Codeforces Round #792 (Div. 1 + Div. 2)
    LeetCode 725. Split Linked List in Parts【链表】中等
    Servlet
    常用的display的属性
    MATLAB | 对随机信号进行统计分析,绘制频次直方图、频率分布图,与理论概率密度进行比较
    Java Web Start 指南
  • 原文地址:https://www.cnblogs.com/jianhua1992/p/17396492.html